
108 Brownian motion

V.3.3 Caldeira–Leggett model

In this subsection, we introduce a simple microscopical model for the fluid in which the Brownian
particle is immersed, which leads to a friction force proportional to the velocity.

::::::
V.3.3 a

:::::::::::::::::::::::::::::::
Caldeira–Leggett Hamiltonian

Consider a “Brownian” particle of mass M , with position and momentum x(t) and p(t) respec-
tively, interacting with a “bath” of N mutually independent harmonic oscillators with respective
masses mj , positions xj(t) and momenta pj(t). The coupling between the particle and each of the
oscillators is assumed to be bilinear in their positions, with a coupling strength Cj . Additionally,
we also allow for the Brownian particle to be in a position-dependent potential V0(x).

Under these assumptions, the Hamilton function of the system consisting of the Brownian par-
ticle and the oscillators reads
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It is convenient to rewrite the potential V0 as

V0(x) = V (x) +
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j=1

C2
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2mjω2
j

)
x2,

where the second term in the right member clearly vanishes when the Brownian particle does not
couple to the oscillators. The Hamilton function (V.68a) can then be recast as
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. (V.68b)

This Hamilton function—or its quantum-mechanical counterpart, which we shall meet again in
Sec. VI.4.3 c—is known as the Caldeira(bm)–Leggett (bn) Hamiltonian [46].

For a physical interpretation, it is interesting to rescale the characteristics of the bath oscillators,
performing the change of variables

mj → m′j =
mj

λ2
j

, xj → x′j = λjxj , pj → p′j =
pj
λj
, j = 1, . . . , N

with λj ≡
mjω
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j

Cj
dimensionless constants. The Hamiltonian (V.68b) then becomes
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, (V.69)

i.e. the interaction term between the Brownian particle and each oscillator only depends on their
relative distance. The Caldeira–Leggett Hamiltonian can thus be interpreted as that of a particle
of mass m, moving in the potential V with (light) particles of masses m′j attached to it by springs
of respective spring constants m′jω

2
j [47].

(bm)A. Caldeira, born 1950 (bn)A. J. Leggett, born 1938
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Coming back to the form (V.68b) of the Hamilton function, the corresponding equations of
motion, derived from the Hamilton equations (II.1), read

dx(t)

dt
=

1

M
p(t),

dp(t)

dt
=

N∑
j=1

Cj

[
xj(t)−

Cj
mjω2

j

x(t)

]
−

dV
(
x(t)

)
dx

, (V.70a)

dxj(t)

dt
=

1

M
pj(t),

dpj(t)

dt
= −mω2

jxj(t) + Cjx(t), (V.70b)

which can naturally be recast as second-order differential equations for the positions x(t), xj(t).

::::::
V.3.3 b

::::::::::::::
Free particle

Let us now assume that the Brownian particle is “free”, in the sense that the potential V in
the Hamiltonian (V.68b) vanishes, V (x) = 0. In that case, the last term on the right-hand side of
second equation of motion for the Brownian particle, Eq. (V.70a), vanishes.

Integrating formally the equations of motion (V.70b) for each oscillator between an initial time
t0 and time t, one obtains
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Performing an integration by parts and rearranging the terms, one finds
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This can then be inserted in the right member of the second equation of motion in Eq. (V.70a).
Combining with the first equation of motion giving p(t) in function of dx(t)/dt, one obtains
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(V.71)

Introducing the quantities

γ(t) ≡ 1
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cosωjt (V.72a)

and

FL(t) ≡
N∑
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, (V.72b)

which both only involve characteristics of the bath, Eq. (V.71) becomes

M
d2x(t)

dt2
+M

∫ t

t0

γ(t− t′) dx(t′)

dt
dt′ = −Mγ(t− t0)x(t0) + FL(t). (V.72c)

This evolution equation for the position—or equivalently the velocity, since x(t0) in the right-
hand side is only a number—of the Brownian particle is exact, and follows from the Hamiltonian
equations of motion without any approximation. It is obviously very reminiscent of the generalized
Langevin equation (V.61a), up to a few points, namely the lower bound of the integral, the term
−Mγ(t−t0)x(t0), and the question whether FL(t) as defined by relation (V.72b) is a Langevin force.
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The first two differences between Eq. (V.61a) and Eq. (V.72c), rewritten in terms of the velocity,
are easily dealt with, by sending the arbitrary initial time t0 to −∞: anticipating on what we shall
find below, the memory kernel γ(t) vanishes at infinity for the usual choices for the distribution of
the bath oscillator frequencies, which suppresses the contribution −Mγ(t− t0)x(t0).

In turn, the characteristics of the force FL(t), Eq. (V.72b), depend on the initial positions and
momenta {xj(t0), pj(t0)} of the bath oscillators at time t0. Strictly speaking, if the latter are exactly
known, then FL(t) is a deterministic force, rather than a fluctuating one. When the number N of
oscillators becomes large, the deterministic character of the force becomes elusive, since in practice
one cannot know the variables {xj(t0), pj(t0)} with infinite accuracy (see the discussion in Sec. II.1).
In practice, it is then more fruitful to consider the phase-space density ρN

(
t0, {qj}, {pj}

)
, Eq. (II.3).

Assuming that at t0 the bath oscillators are in thermal equilibrium at temperature T , ρN at that
instant is given by the canonical distribution
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Computing average values with this Gaussian distribution,(68) one finds that the force FL(t) as given
by Eq. (V.72b) is a stationary Gaussian random process, with vanishing average value 〈FL(t)〉 = 0
and the autocorrelation function

〈FL(t)FL(t+ τ)〉 = MkBTγ(τ).

That is, FL(t) has the properties of a Langevin force as discussed in § V.1.1 b.

Remark: For V (x) = 0, the Hamilton function (V.69) is invariant under global translations of all
(Brownian and light) particles, since it only depends on relative distances. As a consequence, the
corresponding total momentum p+

∑
j p
′
j is conserved.

::::::
V.3.3 c

:::::::::::::::::::::::::::::::::::::
Limiting case of a continuous bath

As long as the number N of bath oscillators is finite, the Caldeira–Leggett Hamiltonian (V.68b)
with V (x) = 0 [or with a harmonic potential V (x) ∝ x2] strictly speaking leads to a periodic
dynamical evolution. As thus, it cannot provide an underlying microscopic model for Brownian
motion.(69) The latter can however emerge if one considers the limit of an infinite number of bath
degrees of freedom,(70) in particular if the oscillator frequencies span a continuous interval.

To provide an appropriate description for both finite- and infinite-N cases, it is convenient to
introduce the spectral density of the coupling to the bath

J(ω) ≡ π

2

∑
j

C2
j

mjωj
δ(ω − ωj). (V.73)

With its help, the memory kernel (V.72a) can be recast as

γ(t) =
2

π

∫
J(ω)

Mω
cosωtdω. (V.74)

(68)As noted in the remark at the end of Sec. V.1.1 b, this is indeed the meaning of expectation values in this chapter,
since we are averaging over all microscopic configurations {xj(t0), pj(t0)} compatible with a given macroscopic
temperature.

(69)... valid on any time scale. Physically, if N � 1, the Poincaré(bo)recurrence time of the system will in general be
very large. On a time scale much smaller than this recurrence time, the periodicity of the problem can be ignored,
and the dynamics is well described by the generalized Langevin model.

(70)The frequencies of the bath oscillators should not stand in simple relation to each other—as for instance if they
were all multiples of a single frequency.

(bo)H. Poincaré, 1854–1912
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If N is finite, then J(ω) is a discrete sum of δ-distributions. Let ε denote the typical spacing
between two successive frequencies ωj of the bath oscillators. For evolutions on time scales much
smaller than 1/ε, the discreteness of the set of frequencies may be ignored.(69) Consider the contin-
uous function Jc(ω), such that on every interval Iω ≡ [ω, ω + dω] of width dω � ε, with dω small
enough that Jc(ω) does not vary significantly over Iω, one has

Jc(ω) dω =
∑
ωj∈Iω

π

2

C2
j

mjωj
. (V.75)

One can then replace J(ω) by Jc(ω), for instance in Eq. (V.74), which amounts to considering a
continuous spectrum of bath frequencies.

The simplest possible choice for Jc(ω) consists in assuming that it is proportional to the frequency
for positive values of ω. To be more realistic, one also introduces an upper cutoff frequency ωc,
above which Jc vanishes:

Jc(ω) =
{Mγω for 0 ≤ ω ≤ ωc,

0 otherwise.
(V.76)

This choice leads at once with Eq. (V.74) to γ(t) = 2γδωc(t), where

δωc(t) =
1

π

sinωct

t
(V.77)

is a function that tends to δ(t) as ωc → +∞ and only takes significant values on a range of typical
width ω−1

c around t = 0. ω−1
c is thus the characteristic time scale of the memory kernel γ(t).

Remarks:

∗ In the limit ωc → +∞, i.e. of an instantaneous memory kernel γ(t) = 2γδ(t), the evolution
equation (V.72c) reduces to the Langevin equation [cf. (V.1)] Mẍ(t) + Mγẋ(t) = FL(t). As this
is also the equation governing the electric charge in a RL circuit, the choice Jc(ω) ∝ ω at low
frequencies is referred to as “ohmic bath”. In turn, a harmonic bath characterized by Jc(ω) ∝ ωη

with η < 1 (resp. η > 1) is referred to as sub-ohmic (resp. super-ohmic).(71)

∗ Instead of a step function Θ(ωc−ω) as in Eq. (V.76), one may also use a smoother cutoff function
to handle the ultraviolet modes in the bath, without affecting the physical results significantly.

(71)See Ref. [48] for a study in the non-ohmic case.


