Non-equilibrium physics




Time/place: Lecture (eKVV):  Mon & Wed 08:30-10:00 in D6-135 
Tutorials (eKVV):  Fri 08:30-10:00 in D6-135

Instructor: Nicolas Borghini (borghini at physik dot uni-bielefeld dot de) E6-123
Tutor:  Steffen Feld
 
Oral exam, registration at the end of the semester

Homepage:   http://www.physik.uni-bielefeld.de/~borghini/Teaching/Nonequilibrium16
→ latest version of the lecture: 
     http://www.physik.uni-bielefeld.de/~borghini/Teaching/Nonequilibrium
 
News: Lecture evaluation: the outcome
 
Prerequisites: Classical mechanics, Special Relativity, Thermodynamics & Statistical physics
(Theoretische Physik I, II, III)
 
Literature: * Boon & Yip: Molecular hydrodynamics
* Huang: Statistical mechanics
* Kubo, Toda & Hashitsume: Statistical physics II
* Landau & Lifschitz: Course of theoretical physics,
              Vol. 5: Statistical physics
              Vol. 9: Statistical physics, part II
              Vol. 10: Physical kinetics
* Pottier: Nonequilibrium statistical physics
* Reif: Fundamentals of statistical and thermal physics
* Zwanzig: Nonequilibrium statistical mechanics
 
Content: Thermodynamics of irreversible processes
  April 11  Reminder on equilibrium thermodynamics
  April 13  Thermodynamics of irreversible processes: description
  April 18  Linear irreversible processes: generalities
  April 20  Linear irreversible processes: first examples
  April 25  Linear irreversible processes in simple fluids
Kinetic equations
  April 27  Random variables
  May 2  Probabilistic description of classical many-body systems
  May 4 & 9  Reduced phase-space densities & their time evolution; BBGKY hierarchy
  May 9 & 11  Boltzmann equation: assumptions and derivation
  May 18  Boltzmann equation: balance equations & H-theorem
  May 23  Boltzmann equation: equilibrium solutions
  May 25  Boltzmann equation: computation of transport coefficients
  May 27  Relativistic Boltzmann equation  (part A of Relativistic kinetic theory by de Groot et al.)
  May 30  Approximate solutions of the Boltzmann equation
Brownian motion & stochastic processes
  June 1  Stochastic processes
  June 6  Langevin model of Brownian motion
  June 8  Spectral analysis of stationary stochastic processes
  June 13  Spectral analysis of the Langevin model
                Markovian stochastic processes
  June 15  Fokker-Planck equation
  June 20  Diffusion in position space and in phase space
Linear response theory
  June 22  Probabilistic description of quantum mechanical many-body systems
  June 27  Linear response function & generalized susceptibility
  June 29  Symmetric & canonical correlation functions, spectral density; Kubo formula
  July 4  Green-Kubo relation; spectral density vs. dissipation
  July 6  Fluctuation-dissipation theorem; canonical correlation function vs. relaxation
  July 11  Generalized reciprocal relations; sum rules
  July 13  Quantum Brownian motion
  July 18 & 20  Mori-Zwanzig formalism