Tutorial sheet 9

Discussion topics: Markov processes; Fokker-Planck equation

19. Another view of the Fokker-Planck equation in one dimension

Consider an arbitrary one-dimensional Markovian process X(t), taking its values in a real interval [a, b], and such that the corresponding first two coefficients $\mathcal{M}_1(t, x)$, $\mathcal{M}_2(t, x)$ in the Kramers–Moyal expansion are actually independent of time.

i. Stationary solutions

Recall the form of the Fokker–Planck equation. Assuming that there is no flow of probability across the boundaries x=a and x=b ("reflecting boundary conditions"), write down the differential equation obeyed by the stationary solution $p_{X,1}^{\text{st.}}(x)$ to the Fokker–Planck equation. Show that

$$p_{X,1}^{\text{st.}}(x) = \frac{C}{\mathcal{M}_2(x)} \exp\left[2\int_a^x \frac{\mathcal{M}_1(x')}{\mathcal{M}_2(x')} \,\mathrm{d}x'\right],\tag{1}$$

where C is a constant which need not be computed. Why is this solution unique?

ii. Transforming the Fokker-Planck equation

Assume now that \mathcal{M}_2 is actually constant. Let $V(x) \equiv \frac{1}{2} [\mathcal{M}_1(x)]^2 + \frac{\mathcal{M}_2}{2} \frac{\mathrm{d} \mathcal{M}_1(x)}{\mathrm{d} x}$.

Perform the change of unknown function $p_{X,1}(t,x) = [p_{X,1}^{\text{st.}}(x)]^{1/2} \psi(t,x)$ in the Fokker–Planck equation, where $p_{X,1}^{\text{st.}}(x)$ is the stationary solution (1), and deduce the equation obeyed by $\psi(t,x)$. What do you recognize?

In the new language you just found, to which known problem is that of the Fokker-Planck equation for the Ornstein-Uhlenbeck process $[\mathcal{M}_1(x) = \gamma x, \mathcal{M}_2 = D, x \in \mathbb{R}]$ equivalent?

20. Master equation for Markov processes

The purpose of this exercise is to derive a linear integrodifferential equation—which constitutes the differential form of the Chapman–Kolmogorov equation—for the transition probability and the single-time density of an (almost) arbitrary homogeneous Markov process Y(t), i.e. a process for which the probability transition $p_{Y,1|1}(t_2, y_2 | t_1, y_1)$ only depends on the time difference $\tau \equiv t_2 - t_1$. In analogy with stationary processes, the latter will be denoted by $\mathcal{T}_{Y;\tau}(y_2 | y_1)$.

We assume that for time differences τ much smaller than some time scale τ_c , the transition probability is of the form

$$\mathcal{T}_{Y:\tau}(y_2 \mid y_1) = [1 - \gamma(y_1) \tau] \, \delta(y_2 - y_1) + \Gamma(y_2 \mid y_1) \, \tau + o(\tau), \tag{2a}$$

where $o(\tau)$ denotes a term which is much smaller than τ in the limit $\tau \to 0$. The nonnegative quantity $\Gamma(y_2 | y_1)$ is the transition rate from y_1 to y_2 , and γ is its integral over y_2

$$\gamma(y_1) = \int \Gamma(y_2 \mid y_1) \, \mathrm{d}y_2. \tag{2b}$$

i. Compute the integral of the transition probability $\mathcal{T}_{Y;\tau}(y_2 \mid y_1)$ over final states y_2 .

ii. Master equation

Starting from the Chapman-Kolmogorov equation

$$\mathcal{T}_{Y;\tau+\tau'}(y_3 \mid y_1) = \int \mathcal{T}_{Y;\tau'}(y_3 \mid y_2) \, \mathcal{T}_{Y;\tau}(y_2 \mid y_1) \, dy_2,$$

and assuming that $\tau' \ll \tau_c$ —note that no assumption on τ is needed—, show that after leaving aside a

negligible term, one obtains

$$\mathcal{T}_{Y;\tau+\tau'}(y_3 \mid y_1) = \left[1 - \gamma(y_3) \tau'\right] \mathcal{T}_{Y;\tau}(y_3 \mid y_1) + \tau' \int \Gamma(y_3 \mid y_2) \mathcal{T}_{Y;\tau}(y_2 \mid y_1) \, \mathrm{d}y_2,$$

Check that this leads in the limit $\tau' \to 0$ to the integrodifferential equation

$$\frac{\partial \mathcal{T}_{Y;\tau}(y_3 \mid y_1)}{\partial \tau} = -\gamma(y_3) \mathcal{T}_{Y;\tau}(y_3 \mid y_1) + \int \Gamma(y_3 \mid y_2) \mathcal{T}_{Y;\tau}(y_2 \mid y_1) dy_2,$$

and eventually, after invoking Eq. (2b) and relabelling the variables, to the master equation

$$\frac{\partial \mathcal{T}_{Y;\tau}(y \mid y_0)}{\partial \tau} = \int \left[\Gamma(y \mid y') \, \mathcal{T}_{Y;\tau}(y' \mid y_0) - \Gamma(y' \mid y) \, \mathcal{T}_{Y;\tau}(y \mid y_0) \right] \, \mathrm{d}y'. \tag{3}$$

Note that this evolution equation has the structure of a balance equation, with a gain term, involving the rate $\Gamma(y \mid y')$, and a loss term depending on the rate $\Gamma(y' \mid y)$.

iii. Evolution equation for the single-time probability density

Starting from the consistency condition

$$p_{Y,1}(\tau,y) = \int \mathcal{T}_{Y;\tau}(y \mid y_0) p_{Y,1}(t=0,y_0) dy_0, \tag{4}$$

show that the above master equation leads to

$$\frac{\partial p_{Y,1}(\tau,y)}{\partial \tau} = \int \left[\Gamma(y \mid y') \, \mathcal{T}_{Y;\tau}(y' \mid y_0) - \Gamma(y' \mid y) \, \mathcal{T}_{Y;\tau}(y \mid y_0) \right] p_{Y,1}(t=0,y_0) \, \mathrm{d}y_0 \, \mathrm{d}y'.$$

Check that this then leads to the evolution equation

$$\frac{\partial p_{Y,1}(\tau,y)}{\partial \tau} = \int \left[\Gamma(y \mid y') \, p_{Y,1}(\tau,y') - \Gamma(y' \mid y) \, p_{Y,1}(\tau,y) \right] \, \mathrm{d}y', \tag{5}$$

which is formally identical to the master equation for $\mathcal{T}_{Y;\tau}$.