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Tutorial sheet 8

Discussion topic: Langevin model of Brownian motion

16. Stochastic processes
Let Y (t) be a stochastic process and p

Y,n
resp. p

Y,n|m its n-point resp. conditional n-point densities.

i. Starting from the expression of Bayes’ theorem, show that for all integers n ≥ 2 one can write

p
Y,n

(t1, y1; . . . ; tn, yn) = p
Y,1|n−1(tn, yn| t1, y1; . . . ; tn−1, yn−1)

× p
Y,1|n−2(tn−1, yn−1| t1, y1; . . . ; tn−2, yn−2) · · · p

Y,1|1(t2, y2| t1, y1) p
Y,1

(t1, y1),

where the n instants t1, t2, . . . , tn are all different, but otherwise arbitrary.

ii. Consider the previous identity for n = 3. Using the consistency condition which expresses p
Y,m

as
an integral of p

Y,n
with n > m, here with m = 2, show that the single-time conditional density p

Y,1|1
obeys the integral-functional equation

p
Y,1|1(t3, y3| t1, y1) =

∫
p
Y,1|2(t3, y3| t1, y1; t2, y2) p

Y,1|1(t2, y2| t1, y1) dy2. (1)

Generalize this relation to an equation for p
Y,1|n involving p

Y,1|n+1
.

17. Examples of Markov processes
In the lecture, we shall introduce a specific, important class of stochastic processes, the so-called

Markov processes. These are entirely determined by their single-time density p
Y,1

and their condi-
tional probability density p

Y,1|1, which is referred to as transition probability and obeys the Chapman–
Kolmogorov equation

p
Y,1|1(t3, y3 | t1, y1) =

∫
p
Y,1|1(t3, y3 | t2, y2) p

Y,1|1(t2, y2 | t1, y1) dy2 for t1 < t2 < t3, (2)

to be compared with Eq. (1) in exercise 16.ii.

i. Wiener process
The stochastic process defined by the “initial condition” p

Y,1
(t=0, y) = δ(y) for y ∈ R and the transition

probability (0 < t1 < t2)

p
Y,1|1(t2, y2 | t1, y1) =

1√
2π(t2 − t1)

exp

[
− (y2 − y1)2

2(t2 − t1)

]
is called Wiener process.

Check that this transition probability obeys the Chapman–Kolmogorov equation, and that the
probability density at time t > 0 is given by

p
Y,1

(t, y) =
1√
2πt

e−y
2/2t.

Remark: Note that the above single-time probability density is solution of the diffusion equation

∂f

∂t
=

1

2

∂2f

∂y2

with diffusion coefficient D = 1
2 .
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ii. Ornstein–Uhlenbeck process
The so-called Ornstein–Uhlenbeck process is defined by the time-independent single-time probability
density

p
Y,1

(y) =
1√
2π

e−y
2/2

and the transition probability (τ > 0)

p
Y,1|1(t+ τ, y | t, y0) =

1√
2π(1− e−2τ )

exp

[
− (y − y0e−τ )2

2(1− e−2τ )

]
.

a) Check that this transition probability fulfills the Chapman–Kolmogorov equation, so that the
Ornstein–Uhlenbeck process is Markovian. Show that the process is also Gaussian, stationary, and that
its autocorrelation function is κ(τ) = e−τ .
b) What is the large-τ limit of the transition probability? And its limit when τ goes to 0+?
c) Viewing the above transition probability as a function of τ and y, can you find a partial differential
equation, of which it is a (fundamental) solution?
Hint : Let yourself be inspired(?) by the remark at the end of question i.

18. Characteristic functional of a stochastic process
In the lecture, the characteristic functional associated with a stochastic process YX(t) has been

defined as
GY [k(t)] ≡

〈
exp

[
i

∫
k(t)Y (t) dt

]〉
,

with k(t) a test function.
Expand the exponential in power series of k and express the characteristic functional in terms of

the n-time moments. How would you write the moment 〈Y (t1)Y (t2) · · ·Y (tn)〉 as function of GY [k(t)]?
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