Tutorial sheet 6

Discussion topic: let yourself be inspired by the following exercise and find your own topic(s)!

13. Non-uniform linear response

In the lecture on linear response and in particular on the retarded propagator, we only considered uniform systems, perturbed by position-independent excitations. The formalism is readily extended to non-uniform phenomena, as sketched in this exercise.

Consider a system with volume \mathcal{V} , governed by the Hamiltonian \hat{H}_0 , in canonical equilibrium. This system is subject to a mechanical perturbation, which gives rise to an extra term in the Hamiltonian given by

$$
\hat{W}(t) = -\int f(t, \vec{r}) \hat{A}(\vec{r}) d^3 \vec{r}, \tag{1}
$$

with f a classical function and \hat{A} an operator acting on the Hilbert space of the system.

i. Linear response function

As in the uniform case, the retarded propagator χ_{BA} quantifies the departure from equilibrium of the expectation value of the operator \ddot{B} in response to the above perturbation:

$$
\langle \hat{B}(t,\vec{r}) \rangle_{\text{n.eq.}} = \langle \hat{B} \rangle_{\text{eq.}} + \int_{\mathcal{V}} \left[\int_{-\infty}^{\infty} \chi_{BA}(t,\vec{r},t',\vec{r}') f(t',\vec{r}') dt' \right] d^3 \vec{r}' + \mathcal{O}(f^2). \tag{2}
$$

Convince yourself that the response function is given by

$$
\chi_{BA}(t, \vec{r}, t', \vec{r}') = \frac{i}{\hbar} \left\langle \left[\hat{B}(t, \vec{r}), \hat{A}(t', \vec{r}') \right] \right\rangle_{\text{eq.}} \Theta(t - t') = \frac{i}{\hbar} \left\langle \left[\hat{B}(t - t', \vec{r}), \hat{A}(0, \vec{r}') \right] \right\rangle_{\text{eq.}} \Theta(t - t').
$$

Assuming that the system is invariant under spatial translation, which we do from now on, one finds that χ_{BA} actually only depends on the separation $\vec{r} - \vec{r}'$. This suggests the introduction of spatial Fourier transforms

$$
\tilde{X}(t, \vec{q}) \equiv \int_{\mathbb{R}^3} X(t, \vec{r}) e^{-i\vec{q}\cdot\vec{r}} d^3\vec{r}
$$

(note the minus sign!) for a quantity $X(t, \vec{r})$.

Fourier transforming with respect to both time and space, one defines the

ii. Generalized susceptibility

$$
\tilde{\chi}_{BA}(\omega, \vec{q}) \equiv \int_{\mathbb{R}^3} \left[\lim_{\varepsilon \to 0^+} \int_{-\infty}^{\infty} \chi_{BA}(t, \vec{r}) e^{i\omega t} e^{-\varepsilon t} dt \right] e^{-i\vec{q}\cdot\vec{r}} d^3 \vec{r}.
$$

Assuming $\langle \hat{B} \rangle_{\text{eq.}} = 0$, check that the Kubo formula (2) leads to the identity

$$
\langle \tilde{\hat{B}}(\omega, \vec{q}) \rangle_{\text{n.eq.}} = \tilde{\chi}_{BA}(\omega, \vec{q}) \tilde{f}(\omega, \vec{q}). \tag{3}
$$

In analogy to the uniform case the

iii. Non-symmetrized correlation function is defined as $C_{BA}(t, \vec{r}) \equiv \langle \hat{B}(t, \vec{r}) \hat{A}(0, \vec{0}) \rangle_{\text{eq}}$. Show that its spatial Fourier transform is given by

$$
\int_{\mathbb{R}^3} C_{BA}(t, \vec{r}) e^{-i \vec{q} \cdot \vec{r}} d^3 \vec{r} = \frac{1}{\psi} \langle \hat{B}(t, \vec{q}) \hat{A}(0, -\vec{q}) \rangle_{\text{eq}}.
$$

Let then $\tilde{C}_{BA}(\omega, \vec{q}) \equiv \frac{1}{q}$ *V* \int^{∞} $-\infty$ $\langle \hat{B}(t, \vec{q}) \hat{A}(0, -\vec{q}) \rangle$ $\sum_{\text{eq.}} e^{i\omega t} dt$ be the double Fourier transform of $C_{BA}(t, \vec{r})$. iv. Focussing now on the case $\hat{B} = \hat{A}$, show the identities $\langle \hat{A}(t, \vec{q}) \hat{A}(0, -\vec{q}) \rangle_{\text{eq.}} = \langle \hat{A}(0, \vec{q}) \hat{A}(-t, -\vec{q}) \rangle_{\text{eq.}}$ $\langle \hat{A}(t, \vec{q}) \hat{A}(0, -\vec{q}) \rangle_{\text{eq.}}^* = \langle \hat{A}(0, \vec{q}) \hat{A}(t, -\vec{q}) \rangle_{\text{eq.}}$, and $\langle \hat{A}(t, \vec{q}) \hat{A}(0, -\vec{q}) \rangle_{\text{eq.}}^* = \langle \hat{A}(t - \mathrm{i}\hbar\beta, -\vec{q}) \hat{A}(0, \vec{q}) \rangle_{\text{eq.}}$. The latter is known as $Kubo-Martin-Schwinger condition.$

Deduce from these results that $\tilde{C}_{AA}(\omega, \vec{q})$ is real-valued and that it obeys the *detailed balance* condition $\tilde{C}_{AA}(-\omega, -\vec{q}) = \tilde{C}_{AA}(\omega, \vec{q}) e^{-\beta \hbar \omega}$.

v. Let $\hat{A}(\vec{r})$ now be the particle-density operator $\hat{n}(\vec{r})$.¹ $\tilde{C}_{nn}(\omega, \vec{q}) \equiv \tilde{S}(\omega, \vec{q})$ is then referred to as dynamic structure factor .

a) The spectral function of the system is given by (can you justify this?)

$$
\tilde{\xi}(\omega, \vec{q}) \equiv \frac{1}{2\hbar \nu} \int_{-\infty}^{\infty} \langle \left[\hat{n}(t, \vec{q}), \hat{n}(0, -\vec{q}) \right] \rangle_{\text{eq.}} e^{i\omega t} dt
$$

Show that it is related to the dynamic structure factor according to

$$
\tilde{\xi}(\omega,\vec{q}) = \frac{1}{2\hbar} \big[\tilde{S}(\omega,\vec{q}) - \tilde{S}(-\omega,-\vec{q}) \big] = \frac{1}{2\hbar} \big(1 - e^{-\beta \hbar \omega} \big) \tilde{S}(\omega,\vec{q}).
$$

What do you recognize in the second identity?

b) In the specific case $\hat{A} = \hat{n}$, the perturbation (1) in the Hamiltonian is generally written

$$
\hat{W}(t) = + \int V_{\text{ext.}}(t, \vec{r}) \hat{n}(\vec{r}) d^3 \vec{r},
$$

with $V_{ext.}$ an external potential, which given the definition of \hat{n} makes sense. Let $\chi \equiv \chi_{nn}$ denote the corresponding response function, as defined by Eq. (2) with $\hat{B} = \hat{n}$. Show that $\text{Im }\tilde{\chi}(\omega, \vec{q}) = -\tilde{\xi}(\omega, \vec{q})$.

¹Denoting by $\hat{\vec{r}}_j$ the position operator for the system particle j, one has $\hat{n}(\vec{r}) \equiv \sum_j \delta^{(3)}(\vec{r} - \hat{\vec{r}}_j)$.