Tutorial sheet 13

Discussion topic: Boltzmann equation

26. Electrical conductivity in a magnetic field^{[1](#page-0-0)}

We consider the problem of electric conduction in a metal subject to a constant and uniform electromagnetic field $(\vec{\mathscr{E}}, \vec{\mathscr{B}})$. The conduction electrons (mass m_{e} , charge $-e$) form a non-relativistic, highly degenerate ideal Fermi gas obeying the kinetic Lorentz equation (cf. Tutorial sheet 12) in the presence of an external force \vec{F} , which is here simply the Lorentz force. We assume that the various densities are uniform and stationary: $\bar{f}(t, \vec{r}, \vec{p}) = \bar{f}(\vec{p})$, where \vec{p} denotes the linear momentum, and $n(t, \vec{r}) = n$, which leads to simplifications in the left-hand side of the Lorentz equation. In addition, we assume that the local equilibrium distribution is a function of energy only: $\bar{f}_{(0)}(\vec{p}) = \bar{f}_{(0)}(\varepsilon)$ with $\varepsilon \equiv \vec{p}^2/2m_e$.

i. We first take $\vec{\mathscr{B}} = \vec{0}$. Calculate $\delta \vec{f} \equiv \vec{f} - \vec{f}_{(0)}$ and show that the electric current density \vec{J}_{el} is given in the relaxation time approximation by

$$
\vec{J}_{\mathrm{el.}}=-e^2\!\int\!\tau_{\mathrm{r}}(|\vec{p}|)(\vec{v}\cdot\vec{\mathscr{E}})\vec{v}\,\frac{\mathrm{d}\vec{f}_{(0)}}{\mathrm{d}\varepsilon}\,\frac{\mathrm{d}^3\vec{p}}{(2\pi\hbar)^3}.
$$

Show that, if the local equilibrium distribution is the Fermi distribution (with 2 spin degrees of freedom) at $T = 0$, $\bar{f}_{(0)}(\varepsilon) = 2 \Theta(\varepsilon_{\rm F} - \varepsilon)$ with $\varepsilon_{\rm F}$ the Fermi energy, then \vec{J}_{el} obeys Ohm's law with the electrical conductivity

$$
\sigma_{\text{el.}} = \frac{n e^2}{m_{\text{e}}} \tau_{\text{F}}
$$

where $\tau_F \equiv \tau_r(p_F)$, with p_F the Fermi momentum.

ii. Let now $\vec{\mathscr{B}} \neq \vec{0}$. How is the electrical conductivity modified if $\vec{\mathscr{B}}$ is parallel to $\vec{\mathscr{E}}$?

iii. Consider the case where the electric field is in the xy-plane and the magnetic field along the z -axis, $\mathscr{B} = \mathscr{B} \vec{\mathbf{e}}$ _z with $\mathscr{B} > 0$.

a) Show that the Lorentz equation in the relaxation time approximation becomes

$$
-e\vec{v}\cdot\vec{\mathscr{E}}\frac{\,\mathrm{d}\bar{f}_{(0)}}{\,\mathrm{d}\varepsilon}-e\big(\vec{v}\times\vec{\mathscr{B}}\big)\cdot\vec{\nabla}_{\vec{p}}\delta\bar{f}=-\frac{\delta\bar{f}}{\tau_r(|\vec{p}|)}.
$$

b) We look for a solution of the form

$$
\delta \bar{f} = - \vec{v} \cdot \vec{C} \, \frac{\mathrm{d} \bar{f}_{(0)}}{\mathrm{d} \varepsilon}
$$

with \vec{C} a vector, function of $\vec{\mathcal{E}}$ and $\vec{\mathcal{B}}$ but independent of \vec{v} , to be determined. What should \vec{C} be when $\vec{\mathscr{B}} = \vec{0}$? when $\vec{\mathscr{E}} = \vec{0}$? For the latter case, estimate first the average magnetic force on the electrons. c) Show that \vec{C} satisfies the equation

$$
-e\vec{\mathscr{E}}+\vec{\omega}\times\vec{C}=\frac{\vec{C}}{\tau_r(|\vec{p}|)},
$$

with $\vec{\omega} = \omega \vec{e}_z$, where $\omega \equiv e\mathscr{B}/m_e$ is the Larmor frequency. Justify that \vec{C} is necessarily of the form $\vec{C} = \alpha \vec{\mathscr{E}} + \delta \vec{\mathscr{B}} + \gamma \vec{\mathscr{B}} \times \vec{\mathscr{E}}$, where α, δ, γ are real numbers. Find the expression for \vec{C} and show that

$$
\delta \vec{f} = \frac{e\tau_{\rm r}}{1 + \omega^2 \tau_{\rm r}^2} \left(\vec{\mathscr{E}} + \tau_{\rm r} \, \vec{\omega} \times \vec{\mathscr{E}} \right) \cdot \vec{v} \, \frac{\mathrm{d} \vec{f}_{(0)}}{\mathrm{d} \varepsilon}.
$$

¹This exercise was shamelessly stolen from the book Equilibrium and non-equilibrium statistical thermodynamics by M. Le Bellac et al.

d) Calculate the electric current and the components $(\sigma_{el.})_{ij}$, $i, j = x, y$ of the electrical conductivity tensor. Verify that $(\sigma_{el.})_{xy} = -(\sigma_{el.})_{yx}$ and comment on this relation.

27. Electrical conductivity in a magnetic field: Hall effect

This exercise is a sequel to the previous one, yet tackles the problem differently. We again consider the problem of electric conduction in a metal. We now assume that the conductor subject to the electric and magnetic fields $\vec{\mathcal{E}}$, $\vec{\mathcal{B}}$ is a rectangular parallelepiped, with its sides along the coordinate axes. Let L, l, and d be the respective lengths of the sides parallel to the x -, y and z -directions.

i. Drude–Lorentz model

To model the effect of collisions in a simple way, one introduces an "average equation of motion" for the conduction electrons—i.e., an evolution equation for their average velocity $\langle \vec{v} \rangle$

$$
\frac{\mathrm{d}\langle \vec{v} \rangle}{\mathrm{d}t} = -\frac{\langle \vec{v} \rangle}{\tau_{\rm r}} - \frac{e}{m_{\rm e}} \big(\vec{\mathscr{E}} + \langle \vec{v} \rangle \times \vec{\mathscr{B}} \big).
$$

Give a physical interpretation for this equation. Check that in the stationary regime one has

$$
\langle v_x \rangle = - \frac{e \tau_{\rm r}}{m_{\rm e}} \, \mathscr{E}_x - \omega \tau_{\rm r} \langle v_y \rangle \, , \qquad \langle v_y \rangle = - \frac{e \tau_{\rm r}}{m_{\rm e}} \, \mathscr{E}_y + \omega \tau_{\rm r} \langle v_x \rangle \, ,
$$

with ω the Larmor frequency defined in exercise 26. Show that if one takes $\tau_r = \tau_F$, one recovers the same expression for the conductivity tensor as in exercise 26.

ii. Calculate in terms of \mathscr{E}_x the value \mathscr{E}_H of \mathscr{E}_y which cancels $(J_{el.})_y$. Verify that the transport of electrons in that situation is the same as in the case $\vec{\mathscr{B}} = \vec{0}$, in other words $(J_{\text{el.}})_x = \sigma_{\text{el.}} \mathscr{E}_x$. The field intensity \mathscr{E}_H is called *Hall field*, and the *Hall resistance* is defined by

$$
R_{\rm H} \equiv \frac{V_{\rm H}}{I}
$$

where V_H is the Hall voltage, $V_H/l = \mathscr{E}_H$, and I the total electric current along the x direction. Show that $R_{\rm H}$ is given by

$$
R_{\rm H} = \frac{\mathcal{B}}{nde},
$$

with n the density of conduction electrons. By noting that R_H is independent of the relaxation time, find its expression using an elementary argument.