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Tutorial sheet 10

Discussion topic: BBGKY hierarchy, single-particle kinetic equations

21. Two-particle phase space density in a classical ideal gas
The purpose of this exercise is to show that even in a classical ideal gas of identical particles, (small)

correlations between particles arise when their total number N is fixed.

i. Canonical equilibrium
Consider first the case of a classical gas of N non-interacting identical particles, each of which is
described by a Hamilton function h, so that the total Hamilton function reads

HN = h(1) + h(2) + · · ·+ h(N),

where the positions and momenta of the particles have been for brevity denoted by the particle label.
At thermodynamic equilibrium, the canonical partition function for this gas is

ZN (β,V ) =

[
Z1(β,V )

]N
N !

,

with Z1 the partition function for a single particle—which need not be specified hereafter.
a) Compute first the single-particle phase space density f (1)(~r1, ~p1).
b) Write down the two-particle phase space density f (2)(~r1, ~p1, ~r2, ~p2), and compare it to the product
of the single-particle densities for particles 1 and 2. What do you notice?

ii. Grand canonical equilibrium
The number of particles in the gas is now allowed to vary, so that the proper description at thermo-
dynamic equilibrium takes place in the grand canonical ensemble, involving the “chemical” Lagrange
multiplier α = βµ.
a) Recall the expression of the grand canonical partition function Z(β,V , α) in terms of the canonical
partition functions ZN and α, then in terms of Z1 and α.
b) Derive the single-particle phase space density f (1)(~r1, ~p1).
Hint : Consider first the contribution to f (1) coming from the case when the gas consists of N particles,
then carefully sum over all possible values of N .
c) Compute the two-particle phase space density f (2)(~r1, ~p1, ~r2, ~p2) and rewrite it as function of the
single-particle densities for particles 1 and 2. Compare with the result in the canonical approach.

22. Reduced density matrices
Consider a system of N identical fermions. Assuming they are in a state which can be described

by a normalised wave function Ψ(t, ~r1, . . . , ~rN ), one defines the corresponding single-particle density
matrix by its elements

ρ(1)(~r, ~r ′) ≡ N
∫

Ψ(t, ~r, ~r2, . . . , ~rN )
[
Ψ(t, ~r ′, ~r2, . . . , ~rN )

]∗
d3~r2 · · · d3~rN ,

where the spin degrees of freedom have not be written.1 Similarly, one introduces the two-particle
density matrix

ρ(2)(~r1, ~r2, ~r
′
1, ~r
′
2) ≡

N(N − 1)

2

∫
Ψ(t, ~r1, ~r2, ~r3, . . . , ~rN )

[
Ψ(t, ~r ′1, ~r

′
2, ~r3, . . . , ~rN )

]∗
d3~r3 · · · d3~rN ,

1Each integration over a position coordinate has to be accompanied by a sum over the possible spin states of the
corresponding particle, yet this is irrelevant for the following.
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and in an analogous manner, a k-particle density matrix for any k < N , up to the N -particle density
matrix ρ(N)(~r1, . . . , ~rN , ~r

′
1, . . . , ~r

′
N ) ≡ Ψ(t, ~r1, . . . , ~rN )

[
Ψ(t, ~r ′1, . . . , ~r

′
N )
]∗.

Note that all these densities are actually, as Ψ itself, time-dependent, although this is usually not
explicitly written.

i. Single-particle density matrix
a) Check that ρ(1) is hermitian. What do its diagonal elements ρ(1)(~r, ~r) represent physically? Deduce
from this interpretation the value of the trace of ρ(1).
b) Let {φk(~r)} denote an orthonormal basis of single-particle wave functions. Show that if Ψ is a
(Slater-)determinant of N such single-particle functions φj (with for simplicity j = 1, . . . , N), then the
single-particle density matrix elements simply read

ρ(1)(~r, ~r ′) =
N∑
j=1

φj(~r)
[
φj(~r

′)
]∗
.

Check that in that case ρ(1) obeys the identity
(
ρ(1)
)2

= ρ(1). What are then its possible eigenvalues?

ii. Two-particle density matrix
a) Check that ρ(2) is antisymmetric in the variables ~r1 and ~r2 as well as in ~r ′1 and ~r ′2, and that it is
hermitian in the exchange of its unprimed and primed variables. What do the diagonal elements (i.e.
with ~r ′1 = ~r1, ~r ′2 = ~r2) represent physically? What is thus the trace of ρ(2)?

b) Compute
∫
ρ(2)(~r1, ~r2, ~r

′
1, ~r2) d3~r2.

c) Show that if Ψ is a Slater-determinant as in question i.b, then ρ(2) can be expressed in terms of the
single-particle density matrix:

ρ(2)(~r1, ~r2, ~r
′
1, ~r
′
2) =

1

2

[
ρ(1)(~r1, ~r

′
1)ρ

(1)(~r2, ~r
′
2)− ρ(1)(~r1, ~r ′2)ρ(1)(~r2, ~r ′1)

]
.

iii. Equations of motion
(This question is independent of i. and ii.) Let Ĥ denote the Hamilton operator of the system, assumed
to involve only the (single-particle) kinetic terms and two-body interactions

Ĥ = − ~2

2m

N∑
i=1

4̂i +
∑
i<j

V
(
~̂ri−~̂rj

)
.

Starting from the Schrödinger equation for Ψ(t, ~r1, . . . , ~rN ), show that the single-particle density matrix
is governed by the equation

i~
∂ρ(1)(~r, ~r ′)

∂t
= − ~2

2m

(
4−4′

)
ρ(1)(~r, ~r ′) + 2

∫ [
V (~r−~r2)− V (~r ′−~r2)

]
ρ(2)(~r, ~r2, ~r

′, ~r2) d3~r2,

where 4′ denotes the Laplacian with respect to ~r ′. Can you tell where this could lead you to, if now
were not the proper time no stop the exercise?

23. Collisionless evolution of the single-particle phase space density
Let f(t, ~r, ~p) denote the single-particle phase space density of a system of non-interacting particles

with massm evolving in the absence of long-range interactions deriving from a vector potential. Consider
the particles which at time t are in an infinitesimal volume element d3~r d3~p around the point (~r, ~p).

Where are these particles at the instant t+ dt? Show that the volume element d3~r ′ d3~p ′ they then
occupy equals d3~r d3~p. Derive the partial differential equation governing the evolution of f .
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