Winter term 2014/15 Nonequilibrium physics Universitat Bielefeld

Tutorial sheet 10

Discussion topic: BBGKY hierarchy, single-particle kinetic equations

21. Two-particle phase space density in a classical ideal gas
The purpose of this exercise is to show that even in a classical ideal gas of identical particles, (small)
correlations between particles arise when their total number N is fixed.

i. Canonical equilibrium
Consider first the case of a classical gas of N non-interacting identical particles, each of which is
described by a Hamilton function h, so that the total Hamilton function reads

Hy = h(1) + h(2) + -+ + h(N),

where the positions and momenta of the particles have been for brevity denoted by the particle label.
At thermodynamic equilibrium, the canonical partition function for this gas is
N

Zv(pv) = DGV
with Z; the partition function for a single particle—which need not be specified hereafter.
a) Compute first the single-particle phase space density f(M(7, 7).
b) Write down the two-particle phase space density f (2)(771, P1, 72, P2), and compare it to the product
of the single-particle densities for particles 1 and 2. What do you notice?

ii. Grand canonical equilibrium

The number of particles in the gas is now allowed to vary, so that the proper description at thermo-
dynamic equilibrium takes place in the grand canonical ensemble, involving the “chemical” Lagrange
multiplier o = Bpu.

a) Recall the expression of the grand canonical partition function Z(3, ¥, «) in terms of the canonical
partition functions Zy and «, then in terms of Z; and «.

b) Derive the single-particle phase space density fM(7, py).
Hint: Consider first the contribution to f(*) coming from the case when the gas consists of N particles,
then carefully sum over all possible values of V.

c) Compute the two-particle phase space density f (2)(771,]5’1,772,15’2) and rewrite it as function of the
single-particle densities for particles 1 and 2. Compare with the result in the canonical approach.

22. Reduced density matrices

Consider a system of N identical fermions. Assuming they are in a state which can be described
by a normalised wave function ¥(¢,71,...,7n), one defines the corresponding single-particle density
matrix by its elements

p D7 7 = N/\IJ(t, oy PN) [T oy )] A3 - - A3,

where the spin degrees of freedom have not be WrittenE] Similarly, one introduces the two-particle
density matrix

N(N -1)
2

=/ —»/) =

P A7, 7, 77 /\I/(t, Py 72, T3y e ooy TN) [W (T T, Ty oy )| A3 - APy,

'Each integration over a position coordinate has to be accompanied by a sum over the possible spin states of the
corresponding particle, yet this is irrelevant for the following.
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and in an analogous manner, a k-particle density matrix for any £ < N, up to the N-particle density
matrix pMN(F, N T T = T )[R T

Note that all these densities are actually, as ¥ itself, time-dependent, although this is usually not
explicitly written.

i. Single-particle density matrix
a) Check that pW) is hermitian. What do its diagonal elements p(l)(f", 7) represent physically? Deduce
from this interpretation the value of the trace of p(1).

b) Let {¢x(7)} denote an orthonormal basis of single-particle wave functions. Show that if ¥ is a
(Slater-)determinant of N such single-particle functions ¢; (with for simplicity j = 1,..., N), then the
single-particle density matrix elements simply read

N
PO T = 6365 ()]
j=1
Check that in that case p(l) obeys the identity (p(l))2 = p(l). What are then its possible eigenvalues?

ii. Two-particle density matrix

a) Check that p? is antisymmetric in the variables 7 and 7 as well as in 7 and 7, and that it is
hermitian in the exchange of its unprimed and primed variables. What do the diagonal elements (i.e.
with 7 = 7|, 7y = %) represent physically? What is thus the trace of p(2)?

b) Compute /p(Q)(Fl,FQ,F{,Fg) d37.

c) Show that if ¥ is a Slater-determinant as in question i.b, then p? can be expressed in terms of the
single-particle density matrix:

—/ —»/) _

/0(2)(7?17 F27 T1,T9 [p(l)(Flv Fll)p(l)(fév F2/> - p(l)<7:»1’ Fé)p(l)(fﬁ, Fll)] .

N =

iii. Equations of motion
(This question is independent of i. and ii.) Let H denote the Hamilton operator of the system, assumed
to involve only the (single-particle) kinetic terms and two-body interactions

. K2 A PN
=—— ZAi + ZV(n 7;)
i=1 1<J
Starting from the Schrodinger equation for W(¢,7,...,7n), show that the single-particle density matrix

is governed by the equation

9o V(7. 7 72
ihp;:’r) = — 53— (8 = &)pNF ) + 2 / [V (F=7y) — V(7'—7)| pD(F, o, 7, ) A7,
m
where A’ denotes the Laplacian with respect to 7/. Can you tell where this could lead you to, if now

were not the proper time no stop the exercise?

23. Collisionless evolution of the single-particle phase space density
Let f(t,7,p) denote the single-particle phase space density of a system of non-interacting particles
with mass m evolving in the absence of long-range interactions deriving from a vector potential. Consider
the particles which at time ¢ are in an infinitesimal volume element d37 d3p’ around the point (7, p).
Where are these particles at the instant ¢ 4+ d¢? Show that the volume element d37 d3p” they then
occupy equals d37 d3p. Derive the partial differential equation governing the evolution of f.



