
Winter term 2013/14 Nonequilibrium physics Universität Bielefeld

Tutorial sheet 1

Discussion topics:
– What are “affinities” and “fluxes” in out-of-equilibrium systems? How do they relate to entropy
production?
– How is local thermodynamic equilibrium defined?

1. Flow of a gas between two containers at different temperatures and pressures
Consider a composite system of two containers A and B with a classical ideal monoatomic gas of

particles of mass m at temperatures TA, TB and pressures PA, PB respectively. Let ∆T ≡ TB − TA
and ∆P ≡ PB − PA denote the temperature and pressure differences.

i. Recall the expression of the Maxwell–Boltzmann distribution p(~v) for the velocities in an ideal
gas at temperature T . Assuming that the particle density is uniform, write down the number density
f(~r,~v) d3~v of particles per unit volume with a velocity between ~v and ~v + d3~v.

ii. Particle flow
A small hole of cross section S in the wall separating the containers allows gas to slowly flow from

one container to the other. Where are at time t the gas particles which will traverse the hole with a
given velocity ~v between t and t+ dt? Show that the number of particles flowing from container A to
container B per unit time is

J (A)
N =

PAS√
2πmkBTA

.

Deduce the overall particle flux JN ≡ J (A)
N −J (B)

N and express it as a function of ∆T and ∆P , assuming
those differences are small.

iii. Energy flow
Show that the flow of (kinetic) energy through the hole from container A to container B per unit

time is

J (A)
E =

√
2kBTA
πm

PAS .

Deduce the overall energy flux JE ≡ J (A)
E − J (B)

E and express it as a function of ∆T and ∆P .

iv. The chemical potential of a classical ideal gas is given by

µ(T,V , N) = −kBT ln

[
V
N

(
mkBT

2π~2

)3/2]
.

Express JN and JE as a function of the differences (beware the signs!)

∆

(
1

T

)
≡ 1

TB
− 1

TA
and ∆

(
− µ
T

)
≡ µA
TA
− µB
TB

.

What do you recognize?

2. Energy fluctuations and heat capacity
The internal energy U of a system coupled to a heat reservoir, with which it can exchange energy,

is a random variable. Give its variance as a function of the system heat capacity at constant volume.
Hint : Consider derivatives of the logarithm of the (canonical) partition function of equilibrium statistical
mechanics.
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Tutorial sheet 1: Solutions

1. Flow of a gas between two containers at different temperatures and pressures
(This exercise is an adaptation of Lachish, Am. J. Phys. 46 (1978) 1163–1164).

i. The Maxwell–Boltzmann velocity distribution reads

p(~v) =

(
m

2πkBT

)3/2
e−m~v

2/2kBT ,

which leads in a uniform gas at temperature T and pressure P to the single-particle phase-space distri-
bution

f(~r,~v) =
N

V
p(~v) =

P
kBT

(
m

2πkBT

)3/2
e−m~v

2/2kBT .

ii. Particle flow
The particles with a given velocity ~v that traverse the hole between t and t + dt are those which

were in an oblique cylinder with base S and axis of length |~v| dt along the direction of ~v.
Denoting by x the direction perpendicular to the hole surface, with recipient A on the side of

negative x, and by θ the angle of velocity with respect to this direction, one obtains

J (A)
N =

∫
vx≥0

S |~v| cos θ f(~r,~v) d3~v =
PAS
kBTA

(
m

2πkBTA

)3/2
2π

∫ π/2

0
cos θ sin θ dθ

∫ ∞
0
v3e−mv

2/2kBTAdv.

The integral over θ yields a factor 1
2 , while that over v can easily be performed using the change of

variable u = mv2/2kBTA∫ ∞
0
v3e−mv

2/2kBTdv =
2(kBTA)2

m2

∫ ∞
0
u e−u du =

2(kBTA)2

m2
.

All in all, one obtains J (A)
N =

PAS√
2πmkBTA

. There follows

JN =
S√

2πmkB

(
PA√
TA
− PB√

TB

)
=

PAS√
2πmkBTA

(
1− 1 + ∆P/PA√

1 + ∆T/TA

)
' PAS√

2πmkBTA

(
∆T

2TA
− ∆P

PA

)
.

(1)

iii. Energy flow
Using the same reasoning as in ii., the energy flow per unit time from A to B is

J (A)
E =

∫
vx≥0

S |~v| cos θ
1

2
m~v 2f(~r,~v) d3~v =

PAS
kBTA

(
m

2πkBTA

)3/2m
2

4π(kBTA)3

m3

∫ ∞
0
u2 e−u du

The integral over u gives 2, so that J (A)
E = PAS

√
2kBTA
πm

and thus

JE = S
√

2kB
πm

(
PA

√
TA − PB

√
TB

)
' −PAS

√
2kBTA
πm

(
∆T

2TA
+

∆P
PA

)
. (2)

http://dx.doi.org/10.1119/1.11498


iv. The chemical potential of the classical ideal gas can be rewritten as

µ

T
= −kB ln

[(
m

2π~2

)3/2 (kBT )5/2

P

]
.

This gives the total differential d

(
− µ
T

)
= −kB

dP
P

+
5kB

2

dT

T
, and thus

∆P
P

= − 1

kB
∆

(
− µ
T

)
+

5

2

∆T

T
.

In addition,
∆T

T
= −T∆

(
1

T

)
, so that Eqs. (1) and (2) become

JN =
PAS√

2πmkBTA

[
1

kB
∆

(
− µ
T

)
+ 2TA∆

(
1

T

)]
≡ LNN∆

(
− µ
T

)
+ LNE∆

(
1

T

)
, (3a)

JE = PAS
√

2kBTA
πm

[
1

kB
∆

(
− µ
T

)
+ 3TA∆

(
1

T

)]
≡ LEN∆

(
− µ
T

)
+ LEE∆

(
1

T

)
. (3b)

Identifying the response coefficients, one finds

LNE = LNE = PAS
√

2TA
πmkB

,

so that the Onsager symmetry relation is fulfilled.

2. Energy fluctuations and heat capacity
If ZN (β,V ) denotes the canonical partition function, then

〈U〉 = −∂ lnZN
∂β

and
〈(
U − 〈U〉

)2〉
=
∂2 lnZN
∂β2

= −∂〈U〉
∂β

= −dT

dβ

∂〈U〉
∂T

= kBT
2CV .


