Tutorial sheet 1: Solutions

1. Flow of a gas between two containers at different temperatures and pressures
(This exercise is an adaptation of Lachish, Am. J. Phys. 46 (1978) 1163-1164).

i. The Maxwell-Boltzmann velocity distribution reads
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which leads in a uniform gas at temperature T" and pressure P to the single-particle phase-space distri-
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ii. Particle flow

The particles with a given velocity ¢ that traverse the hole between ¢ and ¢ + dt are those which
were in an oblique cylinder with base § and axis of length || d¢ along the direction of 7.

Denoting by x the direction perpendicular to the hole surface, with recipient A on the side of
negative x, and by 6 the angle of velocity with respect to this direction, one obtains
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The integral over § yields a factor 3,

variable u = mv?/2kpT
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while that over v can easily be performed using the change of

P

All in all, one obtains j]S[A) = % There follows

Je— S <5PA Pp > _ PaS (1 1+ AP/P,y ) . Pas <AT A5P>
N rmks \VTa Tz/) 2rmkpTa I+ AT Ts)  V2rmkpTa\2Ta P4

(1)
iii. Energy flow
Using the same reasoning as in ii., the energy flow per unit time from A to B is
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The integral over u gives 2, so that J PSA) =PuS and thus
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iv. The chemical potential of the classical ideal gas can be rewritten as
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This gives the total differential d
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Identifying the response coefficients, one finds
2T 4

Lng = LNg = PaS )
kaB

so that the Onsager symmetry relation is fulfilled.

2. Energy fluctuations and heat capacity
If Zn(8, V) denotes the canonical partition function, then
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