Tutorial sheet 7

11. Characteristic functional of a stochastic process

In the lecture, the characteristic functional associated with a stochastic process $Y_X(t)$ has been defined as

$$
G_{Y_X}[k(t)] \equiv \left\langle \exp\left[i\int k(t) Y_X(t) dt\right]\right\rangle,
$$

with $k(t)$ a test function.

i. Characteristic functional and moments

Expand the exponential in power series of k and express the characteristic functional in terms of the *n*-time moments. How would you write the moment $\langle Y_X(t_1)Y_X(t_2)\cdots Y_X(t_n)\rangle$ as function of $G_{Y_X}[k(t)]$?

ii. Gaussian process

Give the characteristic functional associated with a Gaussian process.

12. Vibrating string

Consider a weightless elastic strings, whose extremities are fixed at points $x = 0$ and $x = L$ along some x-axis. Let $y(x)$ denote the displacement of the string transverse to this axis—for the sake of simplicity, we can assume that this displacement is one-dimensional—at position x . For small displacements, one can show that the elastic energy associated with a given profile $y(x)$ reads

$$
E[y(x)] = \int_0^L \frac{1}{2} k \left[\frac{\mathrm{d}y(x)}{\mathrm{d}x} \right]^2 \mathrm{d}x,\tag{1}
$$

with k a positive constant.

When the string undergoes thermal fluctuations, induced by its environment at temperature T , $y(x)$ becomes a random function (of position, instead of time), where one expects that the probability for a given $y(x)$ should be proportional to $e^{-\beta E[y(x)]}$ with $\beta = 1/k_B T$. Here, we wish to consider a discretized version of the problem and view $y(x)$ as the realization of a stochastic function $Y(x)$.

i. Let $n \in \mathbb{N}$. Consider n points $0 < x_1 < x_2 < \cdots < x_n < L$ and let y_j be the displacement of the string at point x_j . Write down the energy of the string, assuming that it is straight between two successive points x_j , x_{j+1} .

Hint: For the sake of brevity, one can introduce the notations $x_0 = 0$, $x_{n+1} = L$, $y_0 = y_{n+1} = 0$.

ii. We introduce the *n*-point probability density

$$
p_n(x_1, y_1; \ldots; x_n, y_n) = \sqrt{\frac{2\pi L}{k\beta}} \prod_{j=0}^n \sqrt{\frac{k\beta}{2\pi (x_{j+1} - x_j)}} \exp \left[-\frac{k\beta}{2} \frac{(y_{j+1} - y_j)^2}{x_{j+1} - x_j} \right],
$$

which for large n, agrees with the anticipated factor $e^{-\beta E[y(x)]}$ (are you convinced of that?).

Show that the various p_n satisfy the 4 properties given in the lecture. Write down the single-point and two-point averages $\langle Y(x_1) \rangle$ and $\langle Y(x_1)Y(x_2) \rangle$, as well as the autocorrelation function. Which properties does the process possess?