Übungsblatt Nr.4

Diskussionsthemen:

- Welche Bedingungen erfüllt ein Vektorraum? Was ist der Dualraum eines Vektorraums?
- Welche Bedingungen erfüllt ein Skalarprodukt?

12. Funktionen auf C

Seien f = u + iv kontinuierlich differenzierbare (\mathcal{C}^1) Funktionen auf einem Gebiet $\mathcal{G} \subseteq \mathbb{C}$, wobei u und v reellwertig sind.

i. a) Zeigen Sie die Gleichungen
$$\frac{\partial f}{\partial z} = \frac{1}{2} \left(\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \right)$$
 und $\frac{\partial f}{\partial z^*} = \frac{1}{2} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right)$.

Hint: Man kann z und z^* durch x und y ausdrücken und die Kettenregel anwenden.

b) Folgern Sie daraus, dass f genau dann holomorph auf \mathcal{G} ist, wenn $\partial f/\partial z^*$ in \mathcal{G} gleich 0 ist. In diesem Fall ist $\partial f/\partial z$ die komplexe Ableitung f' von f.

ii. Zeigen Sie
$$\left(\frac{\partial f}{\partial z}\right)^* = \frac{\partial f^*}{\partial z^*}$$
 und $\left(\frac{\partial f}{\partial z^*}\right)^* = \frac{\partial f^*}{\partial z}$.

iii. Sei jetzt angenommen, dass f zweimal kontinuierlich differenzierbar (\mathcal{C}^2) ist. Zeigen Sie

$$\triangle f = 4 \frac{\partial^2 f}{\partial z \, \partial z^*} = 4 \frac{\partial^2 f}{\partial z^* \, \partial z}$$

mit dem Laplace-Operator¹ $\triangle \equiv \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$.

13. Reellwertige holomorphe Funktionen

Beweisen Sie, dass jede holomorphe Funktion auf einem Gebiet $\mathcal{G} \subseteq \mathbb{C}$, die nur reelle Werte annimmt, eigentlich konstant ist.

14. Vektorraum und Skalarprodukt

i. Zeigen Sie, dass die Menge der Funktionen

$$\left\{ f : [0, 2\pi] \to \mathbb{C}, f(x) = \sum_{k \in \mathbb{Z}} \lambda_k e^{ikx} \text{ mit } \lambda_k \in \mathbb{C} \right\},$$

ausgestattet mit der üblichen Addition von Funktionen und Multiplikation durch komplexe Zahlen, einen komplexen Vektorraum bildet.

ii. Zeigen Sie, dass die Verknüpfung

$$\langle f, g \rangle = \int_0^{2\pi} f^*(x) g(x) dx$$

ein Skalarprodukt auf dem Vektorraum definiert.²

 $^{^1}$ Beide Seiten dieser definierenden Gleichung sollen auf eine \mathcal{C}^2 -Funktion angewandt werden.

²Streng genommen muss man noch zusätzlich die absolute Konvergenz von $\sum_{k} |\lambda_{k}|$ fordern, damit die Multiplikation der Funktionen im Integranden mathematisch rigoros durch das Cauchy-Produkt von Reihen definiert werden kann. Das Cauchy-Produkt von zwei absolut konvergenten Reihen ist nämlich wieder eine absolut konvergente Reihe.