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Discussion topic: Dynamical similarity and the Reynolds number. You could also educate yourself
on the topic of Life at low Reynolds number and the “scallop theorem” by reading E. M. Purcell’s article
(also accessible via the web page of the lectures)

25. Equations of fluid dynamics in a uniformly rotating reference frame
This exercise is inspired by Chapter 14.5.1 of Modern Classical Physics by Roger D. Blandford and Kip S. Thorne.

For the study of various physical problems (see examples in question iv.a), it may be more convenient
to study the dynamics of a fluid from a reference frame RΩ0 in uniform rotation with angular velocity
~Ω0 with respect to an inertial frame R0.
In exercise 12, you already investigated hydrostatics in a rotating reference frame: in that case only
the centrifugal acceleration plays a role, which can be entirely recast as the effect of a potential energy
Φcen.(~r) ≡ −1

2

(
~Ω0×~r

)2 leading to the centrifugal inertial force density ~fcen. = −ρ~∇Φcen.. The purpose
of this exercise is to generalize that result to the derivation of (some of) the equations governing a
flowing Newtonian fluid.

i. Kinematics
Recall the expressions of the centrifugal and Coriolis accelerations acting on a small fluid element

in terms of its position vector ~r and velocity ~v (measured in RΩ0) and of the angular velocity.

ii. Incompressibility condition
Writing down the relation between the velocity ~v with respect to RΩ0 and that measured in R0,

show that the incompressibility condition valid in the inertial frame leads to ~∇·~v = 0.

iii. Navier–Stokes equation
Show that the incompressible Navier–Stokes equation from the point of view of an observer at rest

in the rotating reference frame RΩ0 reads (the variables are omitted)

D~v

Dt
= −1

ρ
~∇P eff. + ν4~v − 2~Ω0×~v (1)

where P eff. = P + ρ
(
Φ + Φcen.

)
, with Φ the potential energy from which (non-inertial) volume forces

acting on the fluid derive. Check that you recover the equation of hydrostatics found in exercise 12.

iv. Dimensionless numbers and limiting cases
a) Let Lc resp. vc denote a characteristic length resp. velocity for a given flow. The Ekman and Rossby
numbers are respectively defined as

Ek ≡ ν

|Ω0|L2
c

, Ro ≡ vc
|Ω0|Lc

.

Compute Ek and Ro in a few numerical examples:
– Lc ≈ 100 km, vc ≈ 10 m · s−1, Ω0 ≈ 10−4 rad · s−1, ν ≈ 10−5 m2 · s−1 (wind in the Earth atmosphere);
– Lc ≈ 1000 km, vc ≈ 0.1 m · s−1, Ω0 ≈ 10−4 rad · s−1, ν ≈ 10−6 m2 · s−1 (ocean stream);
– Lc ≈ 10 cm, vc ≈ 1 m · s−1, Ω0 ≈ 10 rad · s−1, ν ≈ 10−6 m2 · s−1 (coffee/tea in your cup).
b) Assuming stationarity, which term in Eq. (1) is negligible (against which) at small Ekman number?
at small Rossby number?

Write down the simplified equation of motion valid when both Ek � 1 and Ro � 1 (to which of
the above examples does this correspond?). How do the (effective) pressure gradient ~∇P eff. and flow
velocity stand relative to each other?
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26. Vortex dynamics in Newtonian fluids

i. Show that in a barotropic fluid with only conservative forces, the vorticity ~ω is governed by
∂~ω(t,~r)

∂t
− ~∇×

[
~v(t,~r)× ~ω(t,~r)

]
=

η

ρ(t,~r)
4~ω(t,~r). (2)

ii. Diffusion of a rectilinear vortex
Consider the incompressible flow (with constant uniform ρ) with at t = 0 a rectilinear vortex

~ω(t=0,~r) =
Γ0

2πr
δ(z)~ez (3)

along the z-axis. The system geometry suggests the use of cylindrical coordinates (r, θ, z).
a) Assuming (why does this make sense?) that at t > 0 the vorticity is still along the z-direction and
only depends on the distance r from the axis: ~ω(t,~r) = ωz(t, r)~ez, show that Eq. (2) simplifies to a
(known) partial differential equation for ωz.
b) Can you solve this differential equation with the initial condition (3)?1 You should find that at
time t the vorticity extends over a region of typical width

√
4ηt/ρ.

c) Assuming you obtained ωz(t, r) at the previous step, you can now compute the circulation of the
velocity field around a circle of radius R centered on the z-axis. You should find

Γ(t, R) = Γ0

[
1− e−ρR

2/(4ηt)
]
. (4)

Comment on this result (Hint : compare with the lecture of May 4th).

1One possibility is to remember the lecture of May 25th, in particular the discussion of heat diffusion.
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