Tutorial sheet 7

Discussion topic: What is a sound wave? How do you derive the corresponding equation of motion? How is the speed of sound defined? What happens when the wave amplitude becomes large?

18. One-dimensional "similarity flow"

Consider a perfect fluid at rest in the region $x \geq 0$ with pressure \mathcal{P}_0 and mass density ρ_0 ; the region $x < 0$ is empty $(p = 0, \rho = 0)$. At time $t = 0$, the wall separating both regions is removed, so that the fluid starts flowing into the region $x < 0$. The goal of this exercise is to solve this instance of *Riemann's* problem by determining the flow velocity $v(t, x)$ for $t > 0$. It will be assumed that the pressure and mass density of the fluid remain related by

$$
\frac{\mathcal{P}}{\mathcal{P}_0} = \left(\frac{\rho}{\rho_0}\right)^{\!\!\gamma}, \quad \text{ with } \gamma > 1
$$

throughout the motion. This relation also gives you the speed of sound $c_s(\rho)$.

i. Assume that the dependence on t and x of the various fields involves only the combination $u \equiv x/t$.^{[1](#page-0-0)} Show that the continuity and Euler equations can be recast as

$$
\begin{aligned} \left[u - \mathsf{v}(u)\right] \rho'(u) &= \rho(u) \mathsf{v}'(u) \\ \rho(u) \left[u - \mathsf{v}(u)\right] \mathsf{v}'(u) &= c_s^2(\rho(u)) \rho'(u), \end{aligned}
$$

where ρ' resp. v' denote the derivative of ρ resp. v with respect to u.

ii. Show that the velocity is either constant, or obeys the equation $u - v(u) = c_s(\rho(u))$, in which case the squared speed of sound takes the form $c_s^2(\rho) = c_s^2(\rho_0)(\rho/\rho_0)^{\gamma-1}$.

iii. Show that the results of i. and ii. lead to the relation

$$
\mathsf{v}(u) = a + \frac{2}{\gamma - 1} \, c_s(\rho(u)),
$$

where a denotes a constant whose value is fixed by the condition that $v(u)$ remain continuous inside the fluid. Show eventually that in some interval for the values of u , the norm of v is given by

$$
|\mathsf{v}(u)| = \frac{2}{\gamma+1} \big[c_s(\rho_0) - u \big].
$$

iv. Sketch the profiles of the mass density $\rho(u)$ and the streamlines $x(t)$ and show that after the removal of the separation at $x = 0$ the information propagates with velocity $2c_s(\rho_0)/(\gamma - 1)$ towards the negative-x region, while it moves to the right with the speed of sound $c_s(\rho)$.

19. Inviscid Burgers equation

The purpose of this exercise is to show how an innocent-looking—yet non-linear—partial differential equation with a smooth initial condition may lead after finite amount of time to a discontinuity, i.e. a shock wave.

Neglecting the pressure term in the one-dimensional Euler equation leads to the so-called inviscid Burgers equation

$$
\frac{\partial \mathsf{v}(t,x)}{\partial t} + \mathsf{v}(t,x) \frac{\partial \mathsf{v}(t,x)}{\partial x} = 0.
$$

i. Show that the solution with (arbitrary) given initial condition $v(0, x)$ for $x \in \mathbb{R}$ obeys the implicit equation $\mathsf{v}(0,x) = \mathsf{v}(t,x+\mathsf{v}(0,x),t)$.

Hint: [http://en.wikipedia.org/wiki/Burgers'_equation](http://en.wikipedia.org/wiki/Burgers)

¹... which is what is meant by "self-similar".

ii. Consider the initial condition $v(0, x) = v_0 e^{-(x/x_0)^2}$ with v_0 and x_0 two real numbers. Show that the flow velocity becomes discontinuous at time $t = \sqrt{e/2} x_0/v_0$, namely at $x = x_0\sqrt{2}$.

20. Heat diffusion

In a dissipative fluid at rest, the energy balance equation becomes

$$
\frac{\partial e(t,\vec{r})}{\partial t} = \vec{\nabla} \cdot \left[\kappa(t,\vec{r}) \vec{\nabla} T(t,\vec{r}) \right]
$$

with e the internal energy density, κ the heat capacity and T the temperature.

Assuming that $C = \partial e/\partial T$ and κ are constant coefficients and introducing $\chi \equiv \kappa/C$, determine the temperature profile $T(t,\vec{r})$ for $z < 0$ with the boundary condition of a uniform, time-dependent temperature $T(t, z = 0) = T_0 \cos(\omega t)$ in the plane $z = 0$. At which depth is the amplitude of the temperature oscillations 10% of that in the plane $z = 0$?