Tutorial sheet 7

Discussion topic: What is a sound wave? How do you derive the corresponding equation of motion? How is the speed of sound defined? What happens when the wave amplitude becomes large?

18. One-dimensional "similarity flow"

Consider a perfect fluid at rest in the region $x \ge 0$ with pressure \mathcal{P}_0 and mass density ρ_0 ; the region x < 0 is empty ($\mathcal{P} = 0, \rho = 0$). At time t = 0, the wall separating both regions is removed, so that the fluid starts flowing into the region x < 0. The goal of this exercise is to solve this instance of *Riemann's* problem by determining the flow velocity v(t, x) for t > 0. It will be assumed that the pressure and mass density of the fluid remain related by

$$\frac{\mathcal{P}}{\mathcal{P}_0} = \left(\frac{\rho}{\rho_0}\right)^{\gamma}, \quad \text{with } \gamma > 1$$

throughout the motion. This relation also gives you the speed of sound $c_s(\rho)$.

i. Assume that the dependence on t and x of the various fields involves only the combination $u \equiv x/t$.¹ Show that the continuity and Euler equations can be recast as

$$\begin{bmatrix} u - \mathbf{v}(u) \end{bmatrix} \rho'(u) = \rho(u) \mathbf{v}'(u)$$
$$\rho(u) \begin{bmatrix} u - \mathbf{v}(u) \end{bmatrix} \mathbf{v}'(u) = c_s^2(\rho(u)) \rho'(u)$$

where ρ' resp. v' denote the derivative of ρ resp. v with respect to u.

ii. Show that the velocity is either constant, or obeys the equation $u - v(u) = c_s(\rho(u))$, in which case the squared speed of sound takes the form $c_s^2(\rho) = c_s^2(\rho_0)(\rho/\rho_0)^{\gamma-1}$.

iii. Show that the results of i. and ii. lead to the relation

$$\mathsf{v}(u) = a + \frac{2}{\gamma - 1} c_s(\rho(u))$$

where a denotes a constant whose value is fixed by the condition that v(u) remain continuous inside the fluid. Show eventually that in some interval for the values of u, the norm of v is given by

$$|\mathbf{v}(u)| = \frac{2}{\gamma+1} [c_s(\rho_0) - u].$$

iv. Sketch the profiles of the mass density $\rho(u)$ and the streamlines x(t) and show that after the removal of the separation at x = 0 the information propagates with velocity $2c_s(\rho_0)/(\gamma - 1)$ towards the negative-x region, while it moves to the right with the speed of sound $c_s(\rho)$.

19. Inviscid Burgers equation

The purpose of this exercise is to show how an innocent-looking—yet non-linear—partial differential equation with a smooth initial condition may lead after finite amount of time to a discontinuity, i.e. a shock wave.

Neglecting the pressure term in the one-dimensional Euler equation leads to the so-called *inviscid* Burgers equation $Q_{i}(t_{i}) = Q_{i}(t_{i})$

$$\frac{\partial \mathsf{v}(t,x)}{\partial t} + \mathsf{v}(t,x) \frac{\partial \mathsf{v}(t,x)}{\partial x} = 0$$

i. Show that the solution with (arbitrary) given initial condition v(0, x) for $x \in \mathbb{R}$ obeys the implicit equation v(0, x) = v(t, x + v(0, x) t).

Hint: http://en.wikipedia.org/wiki/Burgers'_equation

¹... which is what is meant by "self-similar".

ii. Consider the initial condition $\mathbf{v}(0, x) = \mathbf{v}_0 e^{-(x/x_0)^2}$ with \mathbf{v}_0 and x_0 two real numbers. Show that the flow velocity becomes discontinuous at time $t = \sqrt{e/2} x_0/\mathbf{v}_0$, namely at $x = x_0\sqrt{2}$.

20. Heat diffusion

In a dissipative fluid at rest, the energy balance equation becomes

$$\frac{\partial e(t,\vec{r})}{\partial t} = \vec{\nabla}\cdot\left[\kappa(t,\vec{r})\vec{\nabla}T(t,\vec{r})\right]$$

with e the internal energy density, κ the heat capacity and T the temperature.

Assuming that $C \equiv \partial e/\partial T$ and κ are constant coefficients and introducing $\chi \equiv \kappa/C$, determine the temperature profile $T(t, \vec{r})$ for z < 0 with the boundary condition of a uniform, time-dependent temperature $T(t, z = 0) = T_0 \cos(\omega t)$ in the plane z = 0. At which depth is the amplitude of the temperature oscillations 10% of that in the plane z = 0?