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Tutorial sheet 5

Discussion topic: What is Kelvin’s circulation theorem? What does it imply for the vorticity?

12. Statics of rotating fluids
This exercise is strongly inspired by Chapter 13.3.3 of Modern Classical Physics by Roger D. Blandford and Kip S. Thorne.

Consider a fluid, bound by gravity, which is rotating rigidly, i.e. with a uniform angular velocity ~Ω0

with respect to an inertial frame, around a given axis. In a reference frame that co-rotates with the
fluid, the latter is at rest, and thus governed by the laws of hydrostatics—except that you now have to
consider an additional term. . .

i. Relying on your knowledge from point mechanics, show that the usual equation of hydrostatics (in
an inertial frame) is replaced in the co-rotating frame by
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ρ(~r)
~∇P (~r) = −~∇

[
Φ(~r) + Φcen.(~r)

]
, (1)

where Φcen.(~r) ≡ −1
2

[
~Ω0 ×~r

]2 denotes the potential energy from which derives the centrifugal inertial
force density, ~fcen. = −ρ~∇Φcen., while Φ(~r) is the gravitational potential energy.

ii. Show that Eq. (1) implies that the equipotential lines of Φ + Φcen. coincide with the contours of
constant mass density as well as with the isobars.

iii. Consider a slowly spinning fluid planet of massM , assuming for the sake of simplicity that the mass
is concentrated at the planet center, so that the gravitational potential is unaffected by the rotation.
Let Re resp. Rp denote the equatorial resp. polar radius of the planet, where |Re − Rp| � Re ' Rp,
and g be the gravitational acceleration at the surface of the planet.
Using questions i. and ii., show that the difference between the equatorial and polar radii is

Re −Rp '
R2

e |~Ω0|2

2g
.

Compute this difference in the case of Earth (Re ' 6.4 × 103 km)—which as everyone knows behaves
as a fluid if you look at it long enough—and compare with the actual value.

13. Stationary vortex:
Let ~ω(t, ~r) = Aδ(x1) δ(x2)~e3 be the vorticity field in a fluid, with A a real constant and {xi}

Cartesian coordinates. Determine the corresponding flow velocity field ~v(t, ~r).
Hint : You should invoke symmetry arguments and Stokes’ theorem. A useful formal analogy is provided
by the Maxwell–Ampère equation of magnetostatics.

14. Model of a tornado
In a simplified approach, one may model a tornado as the steady incompressible flow of a perfect

fluid—air—with mass density ρ = 1.3 kg ·m−3, with a vorticity ~ω(~r) = ω(~r)~e3 which remains uniform
inside a cylinder—the “eye” of the tornado—with (vertical) axis along ~e3 and a finite radius a = 50 m,
and vanishes outside.

i. Express the velocity v(r) ≡
∣∣~v(~r)

∣∣ at a distance r = |~r| from the axis as a function of r and and the
velocity va ≡ v(r=a) at the edge of the eye.
Compute ω inside the eye, assuming va = 180 km/h.
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ii. Show that for r > a the tornado is equivalent to a vortex at x1 = x2 = 0 (as in exercise 13). What
is the circulation around a closed curve circling this equivalent vortex?

iii. Assuming that the pressure P far from the tornado equals the “normal” atmospheric pressure P 0,
determine P (r) for r > a. Compute the barometric depression ∆P ≡ P 0 − P at the edge of the eye.
Consider a horizontal roof made of a material with mass surface density 100 kg/m2: is it endangered
by the tornado?
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