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Tutorial sheet 12

Discussion topic: Convective heat transfer: what is the Rayleigh–Bénard convection? Describe its
phenomenology. Which effects play a role?

For the sake of brevity, throughout this exercise sheet the dependence of the various fields on the
space and time variables is not written.

32. Thermal convection between two vertical plates
Consider a fluid in a gravitational potential −~∇Φ = ~g ≡ g~ez, contained between two infinite

vertical plates at x = ±d/2. When the plates have the same uniform temperature, there exist a static
“isothermal” solution of the equations of motion describing the fluid, in which the latter is at the same
temperature Teq everywhere.

Assume that the plate at x = −d/2 resp. x = +d/2 is at a uniform temperature T− resp. T+ with
T− < T+: this will induce a motion of the fluid, which we want to investigate. For simplicity, we shall
assume that the motion is steady, and that it constitutes a small perturbation of the equilibrium state
in which both temperatures are equal. Accordingly, the pressure, temperature and mass density are
written in the form

P = P eq + δP , T = Teq + δT , ρ = ρeq + δρ, (1)
where the quantities with the subscript eq. refer to the equilibrium state, which need not be further
specified.

i. Show that the relevant equations (IX.8), (IX.9), (IX.12), (IX.13) of the lecture notes lead for the
small quantities δP , δT , δρ and ~v to the system

~∇ ·~v = 0 (2a) ~∇
(
δP
)

= δρ~g + νρeq4~v (2b)

~v · ~∇Teq = α4
(
δT
)

(2c) δρ = −α(V )ρeq δT (2d)

where the stationarity assumption has already been used. How did you implement the assumed smallness
of the “perturbations” to the static state? How can you already simplify Eq. (2c)?

ii. Let us assume that the new flow only depends on the x-coordinate, and that the y-direction plays
no role at all; in particular, there is no component vy. Let us further assume that the net mass flow
through any plane z = const. vanishes, i.e.∫ d/2

−d/2
ρeq vz(x, y, z) dx = 0 (3)

for all y, z: this condition allows us to fully specify the “boundary” conditions obeyed by the velocity
field.
a) Determine first the temperature-variation profile δT (x) and deduce from it the mass density per-
turbation δρ(x). (Hint : Eqs. (2c)–(2d)).
b) Determine the velocity profile between the two plates. How do the streamlines look like?

iii. Time for some physics: what is absurd with the assumption of an infinite extent in the z-direction?
Is there really heat convection in the flow determined in question ii.? Can you think of an (everyday-life)
example—with finite plates!—corresponding to the setup considered here?

33. (1+1)-dimensional relativistic motion
On June 29th, the flow velocities considered in the lectures will reach the relativistic regime. To prepare for this
event, you may refresh your knowledge on Special Relativity. This exercise is here to help you in that direction,
and also introduces coordinates which will be used later in the lectures.
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Consider a (1+1)-dimensional relativistic motion along a direction denoted as z, where the denom-
ination “1+1” stands for one time and one spatial dimension. Throughout the exercise, the other two
spatial directions play no role and the corresponding variables x, y are totally omitted. In addition, we
use a system of units in which the speed of light in vacuum c equals 1, as well as Einstein’s summation
convention over repeated indices.

To describe the physics, one may naturally use Minkowski coordinates (x0, x3) = (t, z), with cor-
responding derivatives (∂0, ∂3) = (∂/∂t, ∂/∂z). If there is a high-velocity motion in the z-direction, a
better choice might be to use the proper time τ and spatial rapidity ς such that1

x0
′ ≡ τ ≡

√
t2 − z2, x3

′ ≡ ς ≡ 1

2
log

t+ z

t− z
where |z| ≤ t. (4)

The partial derivatives with respect to these new coordinates will be denoted (∂0′ , ∂3′) = (∂/∂τ, ∂/∂ς).

i. Check that the relations defining τ and ς can be inverted, yielding the much simpler

t = τ cosh ς, z = τ sinh ς. (5)

(Hint: Recognize 1
2 log 1+u

1−u).

ii. In a change of coordinates {xµ} → {xµ′}, the contravariant components V µ of a 4-vector transform
according to V µ → V µ′ = Λµ

′
νV ν (with summation over ν!) where Λµ

′
ν ≡ ∂xµ

′
/∂xν .

Compute first from Eq. (5) the matrix elements Λνµ′ ≡ ∂xν/∂xµ
′ (with ν ∈ {0, 3}, µ′ ∈ {0′, 3′})

of the inverse transformation {V µ′} → {V µ}. Inverting the 2 × 2-matrix you thus found, deduce the
following relationship between the components of the 4-vector in the two coordinate systemsV

0′ = cosh ς V 0 − sinh ς V 3

V 3′ = −1

τ
sinh ς V 0 +

1

τ
cosh ς V 3.

(6)

iii. Using the relation ∂ν = Λµ
′
ν∂µ′ and the matrix elements {Λµ

′
ν} you found in ii.—and which can

be read off Eq. (6)—, express the “4-divergence” ∂νV ν of a 4-vector field V ν in terms of the partial
derivatives ∂µ′ and the components V µ′ in the (τ, ς)-system.

You should find a result that does not equal ∂µ′V µ′ = ∂τV
τ + ∂ςV

ς , which is why in the lecture
notes the notation dµ′V

µ′ is used for the 4-divergence in an arbitrary coordinate system.

iv. Draw on a spacetime diagram—with t on the vertical axis and z on the horizontal axis—the lines
of constant τ and those of constant ς.

Remark: The coordinates (τ, ς) are sometimes called Milne coordinates.

1ς = \varsigma is the word-final form for the lower case sigma, not to be confused with ζ (zeta).

2


