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27. Flows at small Reynolds number
Check that an alternative form of the Stokes equation for creeping incompressible flows is1

3∑
j=1

∂σij

∂xj
= 0 ∀i ∈ {1, 2, 3} (1)

where σij denotes the components (in a system of Cartesian coordinates) of the stress tensor — whose
expression you can find in § III.3.3.b of the lecture notes.

28. Instability of the viscous Burgers equation
Neglecting the pressure term in the Navier–Stokes equation for a one-dimensional incompressible

problem without external force yields the so-called viscous Burgers equation2

∂v(t, x)

∂t
+ v(t, x)

∂v(t, x)

∂x
= ν

∂2v(t, x)

∂x2
, (2)

where ν ≡ η/ρ is the kinematic shear viscosity of the fluid. A trivial solution to this equation of motion
is the steady uniform flow v(t, x) = v0 .

Let us add a perturbation δv(t, x).
a) Write down the linearized equation of motion governing the evolution of δv and derive the corre-
sponding dispersion relation using an appropriate Fourier ansatz.
b) Fixing first k ∈ R, check that the perturbation is exponentially damped in time.
c) Consider now a fixed ω ∈ R. How does the perturbation propagate along the x-direction? (Hint :
For the sake of simplicity you may restrict your discussion to the small-viscosity case ων � v20.)

29. Instabilities in parallel shear flows
In the lectures we considered a number of simple steady incompressible flows with velocity of the

form ~v(~r) = v(y)~ex, where x, y, z are Cartesian coordinates. For the stability of such so-called “parallel
shear flows” there exist a number of results, some of which are discussed in this exercise. Throughout we
assume that the mass density ρ0 remains uniform and constant, and that there are no external forces.

i. Starting from the continuity and incompressible Navier–Stokes equations, write down the linearized
equations of motion governing the evolution of perturbations δ~v(t,~r), δP (t,~r) of steady fields~v0(~r) and
P 0(~r), assuming ~v0(~r) = v0(y)~ex.

One can show (Squire’s theorem) that it is sufficient to investigate perturbations that are two-
dimensional, i.e. that do not depend on z and such that δ~v lies in the (x, y)-plane. To describe the
latter, one can introduce the associated stream function ψ(t,~r), such that the non-zero components of
δ~v are given by δvx = −∂ψ/∂y and δvy = ∂ψ/∂x.

ii. Assume first that the fluid is perfect.
a) Using the linearized equations of motion you obtained in i., show that the stream function satisfies
the partial differential equation[

∂

∂t
+ v0(y)

∂

∂x

]
4ψ(t,~r)− ∂2v0(y)

∂y2
∂ψ(t,~r)

∂x
= 0. (3)

1A shorter (and thus more elegant?) form is ~∇ ·σσσ =~0.
2You already encountered its inviscid version in exercise 19.
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b) Making the Fourier ansatz ψ(t,~r) = ψ̃(y)ei(kx−ωt), show that Eq. (3) leads to Rayleigh’s equation[
v0(y)− c(k)

]( ∂2
∂y2
− k2

)
ψ̃(y)− ∂2v0(y)

∂y2
ψ̃(y) = 0, (4)

where c(k) ≡ ω/k.
For a given profile v0(y) of the unperturbed flow and a fixed wavenumber k, this is an eigenvalue

equation, whose solutions are eigenfunctions ψ̃(y) with associated eigenvalues c(k). Show that if ψ̃
is an eigenfunction associated with some eigenvalue c(k), then its complex conjugate ψ̃∗ is also an
eigenfunction, with eigenvalue c(k)∗. What does this mean for the stability of the unperturbed flow in
case one of the eigenvalues is not real?

iii. If you still have time, you may show that in a Newtonian incompressible fluid, Rayleigh’s equation
is replaced by the Orr–Sommerfeld equation[

v0(y)− c(k)
]( ∂2
∂y2
− k2

)
ψ̃(y)− ∂2v0(y)

∂y2
ψ̃(y) =

ν

ik

(
∂2

∂y2
− k2

)2
ψ̃(y), (5)

with ν ≡ η/ρ0 the kinematic shear viscosity of the fluid.
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