Chapter XI

Flows of relativistic fluids

XI. 1 Relativistic fluids at rest 167
XI. 2 One-dimensional relativistic flows 167
XI.2.1 Bjorken flow 167
XI.2.2 Landau flow 171

Throughout this Chapter $c=1$.

XI. 1 Relativistic fluids at rest

... necessitate the presence of a gravitational field.

XI. 2 One-dimensional relativistic flows

XI.2.1 Bjorken flow

To describe (part of the) system - often referred to as "fireball"- created in the collision of two heavy nuclei at extremely high energies, Bjorken ${ }^{(\text {bf) })}$ proposed to treat it as a perfect fluid with a simple velocity field. In a reference frame \mathcal{R}_{0} ("center-of-momentum frame") in which the total momentum of the colliding nuclei vanishes, and using Minkowski coordinates such that the momenta of the nuclei before their collision lie along the z-direction, the ansatz for the velocity reads [57]

$$
\begin{equation*}
\mathrm{v}^{z}(\mathrm{x})=\frac{z}{t} \quad \text { for }|z|<t, \quad \mathrm{v}^{x}(\mathrm{x})=\mathrm{v}^{y}(\mathrm{x})=0 \tag{XI.1}
\end{equation*}
$$

independent of the "transverse" coordinates x and y. Accordingly, the Lorentz factor of the local rest frame at point x is $\gamma(\mathrm{x})=1 / \sqrt{1-\mathrm{v}^{z}(\mathrm{x})^{2}}=t / \sqrt{t^{2}-z^{2}}$, resulting in the 4 -velocity field

$$
\begin{equation*}
\mathrm{u}^{t}(\mathrm{x})=\frac{t}{\sqrt{t^{2}-z^{2}}}, \quad \mathrm{u}^{x}(\mathrm{x})=\mathrm{u}^{y}(\mathrm{x})=0, \quad \mathrm{u}^{z}(\mathrm{x})=\frac{z}{\sqrt{t^{2}-z^{2}}} . \tag{XI.2}
\end{equation*}
$$

Note that Eq. XI.1) coincides with the velocity distribution of non-interacting particles emitted at time $t=0$ at $z=0$ with a velocity along the z-direction.

XI.2.1 a Milne coordinates

A convenient coordinate system to investigate the properties of the flow defined by Eq. XI.1) consists of the so-called Milne coordinates (bg)

$$
\begin{equation*}
\tau \equiv \sqrt{t^{2}-z^{2}} \quad, \quad \varsigma \equiv \frac{1}{2} \ln \frac{t+z}{t-z}, \tag{XI.3a}
\end{equation*}
$$

called respectively "Bjorken proper time" and "space-time rapidity". Inverting these equations yield the simple relations

$$
\begin{equation*}
t=\tau \cosh \varsigma \quad, \quad z=\tau \sinh \varsigma . \tag{XI.3b}
\end{equation*}
$$

Figure XI. 1 - Milne coordinates

Introducing the matrix with entries $\Lambda^{\mu^{\prime}}{ }_{\nu} \equiv \partial x^{\mu^{\prime}} / \partial x^{\nu}$, where the primed resp. unprimed indices refer to Milne resp. Minkowski coordinates, one quickly finds that the covariant components of a 4 -vector V in the two coordinate systems are related by

$$
\binom{V^{\tau}}{V^{\varsigma}}=\left(\begin{array}{cc}
\cosh \varsigma & -\sinh \varsigma \tag{XI.4}\\
-\frac{1}{\tau} \sinh \varsigma & \frac{1}{\tau} \cosh \varsigma
\end{array}\right)\binom{V^{t}}{V^{z}} .
$$

In particular, this transformation applied to the Bjorken flow 4 -velocity XI.2 yields

$$
\begin{equation*}
u^{\tau}(x)=1, \quad u^{\varsigma}(x)=0 \tag{XI.5}
\end{equation*}
$$

In turn, the Minkowski components XI.2) can be rewritten as

$$
\begin{equation*}
\mathrm{u}^{t}(\mathrm{x})=\cosh \varsigma, \quad \mathrm{u}^{z}(\mathrm{x})=\sinh \varsigma \tag{XI.6}
\end{equation*}
$$

which is convenient for calculations.
Since the Milne coordinates XI.3) are clearly curvilinear, the covariant derivatives $\mathrm{d}_{\tau}, \mathrm{d}_{\varsigma}$ do not necessarily coincide with the respective partial derivatives $\partial_{\tau}, \partial_{\varsigma}$ when acting on vector or more general tensor fields. Instead of working fully in Milne coordinates in the following ${ }^{[71)]}$ we shall compute expressions involving covariant derivatives in Minkowksi coordinates, where $\mathrm{d}_{t}=\partial_{t}$ and $\mathrm{d}_{z}=\partial_{z}$. Using the chain rule $\partial_{\mu^{\prime}}=\partial_{\mu^{\prime}} t \partial_{t}+\partial_{\mu^{\prime}} z \partial_{z}$ for $\mu^{\prime} \in\{\tau, \varsigma\}$, one finds

$$
\binom{\partial_{\tau}}{\frac{1}{\tau} \partial_{\varsigma}}=\left(\begin{array}{cc}
\cosh \varsigma & \sinh \varsigma \tag{XI.7}\\
\sinh \varsigma & \cosh \varsigma
\end{array}\right)\binom{\partial_{t}}{\partial_{z}}
$$

and conversely

$$
\binom{\partial_{t}}{\partial_{z}}=\left(\begin{array}{cc}
\cosh \varsigma & -\sinh \varsigma \tag{XI.8}\\
-\sinh \varsigma & \cosh \varsigma
\end{array}\right)\binom{\partial_{\tau}}{\frac{1}{\tau} \partial_{\varsigma}} .
$$

From there and the 4 -velocity components XI.6, one arrives at once at the relations

$$
\begin{equation*}
u^{\mu}(\mathrm{x}) \partial_{\mu}=u^{t}(\mathrm{x}) \partial_{t}+u^{z}(\mathrm{x}) \partial_{z}=\partial_{\tau} \quad \text { and } \quad \partial_{\mu} u^{\mu}(\mathrm{x})=\partial_{t} u^{t}(\mathrm{x})+\partial_{z} u^{z}(\mathrm{x})=\frac{1}{\tau} \tag{XI.9}
\end{equation*}
$$

[^0]Note that $u^{\mu} \partial_{\mu}$ coincides with $u^{\mu^{\prime}} \partial_{\mu^{\prime}} \equiv u^{\tau} \partial_{\tau}+u^{\varsigma} \partial_{\varsigma}$, while on the other hand $\partial_{\mu} u^{\mu}$ does not equal $\partial_{\mu^{\prime}} u^{\mu^{\prime}} \equiv \partial_{\tau} u^{\tau}+\partial_{\varsigma} u^{\varsigma}$ - which trivially vanishes.

Eventually, the projector X.19b on the 3 -space orthogonal to the flow velocity is readily computed, from which one then deduces the (contravariant) Minkowski components $\nabla^{\mu}(\mathrm{x}) \equiv \Delta^{\mu \nu}(\mathrm{x}) \partial_{\nu}$ of the 3 -gradient X.42a

$$
\nabla^{t}=\sinh ^{2} \varsigma \partial_{t}+\cosh \varsigma \sinh \varsigma \partial_{z}=\frac{\sinh \varsigma}{\tau} \partial_{\varsigma}, \quad \nabla^{z}=\cosh \varsigma \sinh \varsigma \partial_{t}+\cosh ^{2} \varsigma \partial_{z}=\frac{\cosh \varsigma}{\tau} \partial_{\varsigma}
$$

together with $\nabla^{x}=\partial_{x}, \nabla^{y}=\partial_{y}$, where Eq. XI.7) was used. Invoking transformation XI.4, the Milne components of the 3 -gradient are

$$
\begin{equation*}
\nabla^{\tau}=0 \quad, \quad \nabla^{\varsigma}=\frac{1}{\tau^{2}} \partial_{\varsigma} \tag{XI.10}
\end{equation*}
$$

Consistent with the fact that only u^{τ} is non-vanishing, ∇^{τ} vanishes and ∇^{ς} only involves ∂_{ς}.
The reader worried by the appearance of the factor $1 / \tau^{2}$ in ∇^{ς} will possibly be relieved when realizing that $\nabla_{\varsigma} \equiv g_{\mu^{\prime} \varsigma} \nabla^{\mu^{\prime}}=g_{\varsigma \varsigma} \nabla^{\varsigma}$-because the metric tensor is still diagonal in Milne coordinates-and that this equals ∂_{ς} thanks to $g_{\varsigma \varsigma}=\tau^{2}$.

XI.2.1 b Perfect fluid

For a perfect fluid, with energy-momentum tensor given by Eq. X.17b , the conservation equation X.7a projected parallel resp. orthogonal to the flow 4 -velocity leads to the general equations of motion

$$
\begin{equation*}
u^{\mu}(\mathrm{x}) \mathrm{d}_{\mu} \epsilon(\mathrm{x})+[\epsilon(\mathrm{x})+\mathcal{P}(\mathrm{x})] \mathrm{d}_{\mu} u^{\mu}(\mathrm{x})=0 \tag{XI.11a}
\end{equation*}
$$

resp.

$$
\begin{equation*}
[\epsilon(\mathrm{x})+\mathcal{P}(\mathrm{x})] u^{\mu}(\mathrm{x}) \mathrm{d}_{\mu} u^{\rho}(\mathrm{x})+\nabla^{\rho}(\mathrm{x}) \mathcal{P}(\mathrm{x})=0 \tag{XI.11b}
\end{equation*}
$$

corresponding to Eqs. X.43b) X.43c with vanishing viscous tensor.
In the case of the Bjorken flow 4 -velocity, for which we derived Eq. XI.9), these equations become

$$
\begin{equation*}
\partial_{\tau} \epsilon(\mathrm{x})+\frac{\epsilon(\mathrm{x})+\mathcal{P}(\mathrm{x})}{\tau}=0 \tag{XI.12a}
\end{equation*}
$$

and

$$
\begin{equation*}
[\epsilon(\mathrm{x})+\mathcal{P}(\mathrm{x})] \partial_{\tau} u^{\rho}(\mathrm{x})+\nabla^{\rho}(\mathrm{x}) \mathcal{P}(\mathrm{x})=0 \tag{XI.12b}
\end{equation*}
$$

The second of these equations holds in any coordinate system, in particular with Milne coordinates. In the latter, we have found that the components u^{τ}, u^{ς} of the velocity are constant, see Eq. XI.5), in particular independent of τ. That is, the first term on the left hand side of Eq. XI.12b vanishes, leaving only

$$
\nabla^{\rho^{\prime}}(\mathrm{x}) \mathcal{P}(\mathrm{x})=0 \quad \text { for } \rho^{\prime} \in\{\tau, x, y, \varsigma\}
$$

From Eq. XI.10, the component $\rho^{\prime}=\tau$ of this equation is trivial since $\nabla^{\tau}=0$. In turn the spatial components read $\partial_{x} \mathcal{P}=\partial_{y} \mathcal{P}=0$, which were obvious from the start since the problem was assumed to be independent of x and y, and

$$
\begin{equation*}
\partial_{\varsigma} \mathcal{P}(x)=0 \tag{XI.13}
\end{equation*}
$$

That is, the pressure - and invoking an equation of state, the energy density - is also independent of rapidity.

Coming back to the first equation of motion XI.12, it can also be rewritten in the form

$$
\begin{equation*}
\partial_{\tau}[\tau \epsilon(\mathrm{x})]=-\mathcal{P}(\mathrm{x}), \tag{XI.14}
\end{equation*}
$$

which shows that it is the energy-balance equation: the change in the total energy (per unit transverse surface) of a comoving volume ${ }^{(72)}$ is due to the work of pressure forces.

[^1]
Remarks:

* In a perfect fluid the entropy is conserved: $\mathrm{d}_{\mu}\left[s(\mathrm{x}) u^{\mu}(\mathrm{x})\right]=0$, see Eq. X.22, with s the entropy density. This equation can be recast in the form $u^{\mu}(\mathrm{x}) \mathrm{d}_{\mu} s(\mathrm{x})=-s(\mathrm{x}) \mathrm{d}_{\mu} u^{\mu}(\mathrm{x})$, which using Eq. XI.9) becomes

$$
\begin{equation*}
\partial_{\tau} s(\mathrm{x})=-\frac{s(\mathrm{x})}{\tau} . \tag{XI.15}
\end{equation*}
$$

This equation leads at once to $s(\mathrm{x}) \propto 1 / \tau$, with the simple interpretation that the total entropy in a comoving fluid volume, proportional to $\tau s(\mathrm{x})$, remains constant in the evolution.

* Ditto for conserved charges: the conservation equation $\mathrm{d}_{\mu} N_{a}^{\mu}(\mathrm{x})=0$ [Eq. X.2]] together with the constitutive relation $N_{a}^{\mu}(\mathrm{x})=n_{a}(\mathrm{x}) u^{\mu}(\mathrm{x})$ [Eq. X.17a] $]$ of perfect fluids result in

$$
\begin{equation*}
\partial_{\tau} n_{a}(\mathrm{x})=-\frac{n_{a}(\mathrm{x})}{\tau} . \tag{XI.16}
\end{equation*}
$$

* Bjorken's ansatz XI.1) for the flow velocity means that an observer \mathcal{O}_{v} comoving with the fluid at a given point-being say at time t_{0} at position z_{0} with velocity $v=v^{z}\left(t_{0}, z_{0}\right)=z_{0} / t_{0}$-actually moves with constant velocity v with respect to the reference frame \mathcal{R}_{0}. If \mathcal{R}_{0} is inertial, then \mathcal{O}_{v} defines another inertial frame \mathcal{R}_{v} : systems of Minkowski coordinates (with parallel-oriented axes) in the two frames are related by a Lorentz boost along the z-direction with velocity v. Instead of v, such a boost is often characterized by its rapidity $\xi \equiv \operatorname{artanh} v=\frac{1}{2} \ln \frac{1+v}{1-v}$. One sees that the boost rapidity ξ is precisely the space-time rapidity ς of the point at which \mathcal{O}_{v} is sitting. In turn, the statements that the fluid velocity is independent of ς [Eq. (XI.5]] and that this also holds for the locally-measured thermodynamic quantities [XI.13]] means that all comoving observer \mathcal{O}_{v}, irrespective of their velocity v, view the flow in the same way. The Bjorken flow is thus said to be (longitudinally) boost invariant.

By assuming a simple equation of state, one can derive further results. Let us thus assume that the pressure and energy density are proportional to each other, with a constant-i.e. time- and position-independent-proportionality factor:

$$
\begin{equation*}
\mathcal{P}(\mathrm{x})=c_{s}^{2} \epsilon(\mathrm{x}) \tag{XI.17}
\end{equation*}
$$

For instance, $\mathcal{P}=\epsilon / 3$ for an ideal gas of ultrarelativistic particles without conserved charge (see Appendix X.C. The notation c_{s}^{2} is not arbitrary but corresponds to the fact that c_{s} is indeed the (phase) velocity of sound waves in the fluid.

With this equation of state, Eq. XI.12a leads at once to

$$
\begin{equation*}
\epsilon(\mathrm{x}) \propto \frac{1}{\tau^{1+c_{s}}}, \tag{XI.18}
\end{equation*}
$$

i.e. $\epsilon(\mathrm{x}) \propto 1 / \tau^{4 / 3}$ for an ideal ultrarelativistic gas. That is, the energy density decreases faster than the entropy density - due to the work exerted by pressure.

If one now combines the equation of state XI.17), the Gibbs-Duhem equation (in absence of conserved charge) $\mathrm{d} \mathcal{P}=s \mathrm{~d} T$, and the fundamental relation $\epsilon=T s-\mathcal{P}$, one finds

$$
\mathrm{d} \mathcal{P}=c_{s}^{2} \mathrm{~d} \epsilon=\frac{\epsilon+\mathcal{P}}{T} \mathrm{~d} T .
$$

Rewriting the numerator of the rightmost term as $\left(1+c_{s}^{2}\right) \epsilon$, there comes

$$
\frac{\mathrm{d} \epsilon}{\epsilon}=\frac{1+c_{s}^{2}}{c_{s}^{2}} \frac{\mathrm{~d} T}{T}
$$

This yields $\epsilon \propto T^{1+c_{s}^{-2}}$, which together with relation XI.18) gives

$$
\begin{equation*}
T(\mathrm{x}) \propto \frac{1}{\tau_{\mathrm{c}}^{c_{s}^{2}}}, \tag{XI.19}
\end{equation*}
$$

i.e. $T(\mathrm{x}) \propto 1 / \tau^{1 / 3}$ for an ideal ultrarelativistic gas. Since we found earlier that the energy density of such a system decreases as $\tau^{-4 / 3}$, the behavior of temperature is consistent with the thermal equation of state $\varepsilon \propto T^{4}$ (and with $s \propto T^{3}$).

XI.2.1 c First-order dissipative fluid

to be added soon

[^0]: ${ }^{(71)}$ An appendix to this Chapter may be added at some point...
 ${ }^{(\text {bf) }}$ J. D. Bjorken, born $1934{ }^{(b g)}$ E. A. Milne, 1896-1950

[^1]: ${ }^{(72)} \mathrm{d}^{4} \mathrm{x}^{\prime}=\tau \mathrm{d} \tau \mathrm{d} \varsigma \mathrm{d} x \mathrm{~d} y$ grows proportionally to τ.

