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Throughout this Chapter c = 1.

XI.1 Relativistic fluids at rest
... necessitate the presence of a gravitational field.

XI.2 One-dimensional relativistic flows

XI.2.1 Bjorken flow
To describe (part of the) system—often referred to as “fireball”—created in the collision of two

heavy nuclei at extremely high energies, Bjorken(bf) proposed to treat it as a perfect fluid with
a simple velocity field. In a reference frame R0 (“center-of-momentum frame”) in which the total
momentum of the colliding nuclei vanishes, and using Minkowski coordinates such that the momenta
of the nuclei before their collision lie along the z-direction, the ansatz for the velocity reads [57]

vz(x) =
z

t
for |z| < t, vx(x) = vy(x) = 0, (XI.1)

independent of the “transverse” coordinates x and y. Accordingly, the Lorentz factor of the local
rest frame at point x is �(x) = 1/

p
1� vz(x)2 = t/

p
t2 � z2, resulting in the 4-velocity field

ut(x) =
t

p
t2 � z2

, ux(x) = uy(x) = 0, uz(x) =
z

p
t2 � z2

. (XI.2)

Note that Eq. (XI.1) coincides with the velocity distribution of non-interacting particles emitted
at time t = 0 at z = 0 with a velocity along the z-direction.

:::::::
XI.2.1 a

:::::::::::::::::::
Milne coordinates

A convenient coordinate system to investigate the properties of the flow defined by Eq. (XI.1)
consists of the so-called Milne coordinates(bg)

⌧ ⌘

p
t2 � z2 , & ⌘

1

2
ln

t+ z

t� z
, (XI.3a)

called respectively “Bjorken proper time” and “space-time rapidity”. Inverting these equations yield
the simple relations

t = ⌧ cosh & , z = ⌧ sinh &. (XI.3b)
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Figure XI.1 – Milne coordinates

Introducing the matrix with entries ⇤µ
0
⌫ ⌘ @xµ

0
/@x⌫ , where the primed resp. unprimed indices

refer to Milne resp. Minkowski coordinates, one quickly finds that the covariant components of a
4-vector V in the two coordinate systems are related by

 
V ⌧

V &

!
=

0

@
cosh & � sinh &

�
1

⌧
sinh &

1

⌧
cosh &

1

A
 
V t

V z

!
. (XI.4)

In particular, this transformation applied to the Bjorken flow 4-velocity (XI.2) yields

u⌧ (x) = 1, u&(x) = 0. (XI.5)

In turn, the Minkowski components (XI.2) can be rewritten as

ut(x) = cosh &, uz(x) = sinh & (XI.6)

which is convenient for calculations.

Since the Milne coordinates (XI.3) are clearly curvilinear, the covariant derivatives d⌧ , d& do
not necessarily coincide with the respective partial derivatives @⌧ , @& when acting on vector or more
general tensor fields. Instead of working fully in Milne coordinates in the following,(71) we shall
compute expressions involving covariant derivatives in Minkowksi coordinates, where dt = @t and
dz = @z. Using the chain rule @µ0 = @µ0t @t + @µ0z @z for µ0

2 {⌧, &}, one finds
0

@
@⌧

1

⌧
@&

1

A =

0

@
cosh & sinh &

sinh & cosh &

1

A

0

@
@t

@z

1

A (XI.7)

and conversely 0

@
@t

@z

1

A =

0

@
cosh & � sinh &

� sinh & cosh &

1

A

0

@
@⌧

1

⌧
@&

1

A . (XI.8)

From there and the 4-velocity components (XI.6), one arrives at once at the relations

uµ(x)@µ = ut(x)@t + uz(x)@z = @⌧ and @µu
µ(x) = @tu

t(x) + @zu
z(x) =

1

⌧
. (XI.9)

(71)An appendix to this Chapter may be added at some point...
(bf)J. D. Bjorken, born 1934 (bg)E. A. Milne, 1896–1950
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Note that uµ@µ coincides with uµ
0
@µ0 ⌘ u⌧@⌧ + u&@& , while on the other hand @µuµ does not equal

@µ0uµ
0
⌘ @⌧u⌧ + @&u&—which trivially vanishes.

Eventually, the projector (X.19b) on the 3-space orthogonal to the flow velocity is readily com-
puted, from which one then deduces the (contravariant) Minkowski components r

µ(x) ⌘ �µ⌫(x)@⌫
of the 3-gradient (X.42a)

r
t = sinh2 & @t + cosh & sinh & @z =

sinh &

⌧
@& , r

z = cosh & sinh & @t + cosh2 & @z =
cosh &

⌧
@&

together with r
x = @x, ry = @y, where Eq. (XI.7) was used. Invoking transformation (XI.4), the

Milne components of the 3-gradient are

r
⌧ = 0 , r

& =
1

⌧2
@& . (XI.10)

Consistent with the fact that only u⌧ is non-vanishing, r⌧ vanishes and r
& only involves @& .

The reader worried by the appearance of the factor 1/⌧2 in r
& will possibly be relieved when

realizing that r& ⌘ gµ0&r
µ0

= g&&r&—because the metric tensor is still diagonal in Milne
coordinates—and that this equals @& thanks to g&& = ⌧2.

:::::::
XI.2.1 b

:::::::::::::
Perfect fluid

For a perfect fluid, with energy-momentum tensor given by Eq. (X.17b), the conservation equa-
tion (X.7a) projected parallel resp. orthogonal to the flow 4-velocity leads to the general equations
of motion

uµ(x)dµ✏(x) +
⇥
✏(x) + P (x)

⇤
dµu

µ(x) = 0 (XI.11a)

resp. ⇥
✏(x) + P (x)

⇤
uµ(x)dµu

⇢(x) +r
⇢(x)P (x) = 0, (XI.11b)

corresponding to Eqs. (X.43b)–(X.43c) with vanishing viscous tensor.
In the case of the Bjorken flow 4-velocity, for which we derived Eq. (XI.9), these equations

become
@⌧ ✏(x) +

✏(x) + P (x)

⌧
= 0 (XI.12a)

and ⇥
✏(x) + P (x)

⇤
@⌧u

⇢(x) +r
⇢(x)P (x) = 0. (XI.12b)

The second of these equations holds in any coordinate system, in particular with Milne coor-
dinates. In the latter, we have found that the components u⌧ , u& of the velocity are constant,
see Eq. (XI.5), in particular independent of ⌧ . That is, the first term on the left hand side of
Eq. (XI.12b) vanishes, leaving only

r
⇢
0
(x)P (x) = 0 for ⇢0 2 {⌧, x, y, &}.

From Eq. (XI.10), the component ⇢0 = ⌧ of this equation is trivial since r
⌧ = 0. In turn the spatial

components read @xP = @yP = 0, which were obvious from the start since the problem was assumed
to be independent of x and y, and

@&P (x) = 0. (XI.13)

That is, the pressure—and invoking an equation of state, the energy density— is also independent
of rapidity.

Coming back to the first equation of motion (XI.12), it can also be rewritten in the form

@⌧
⇥
⌧✏(x)

⇤
= �P (x), (XI.14)

which shows that it is the energy-balance equation: the change in the total energy (per unit trans-
verse surface) of a comoving volume(72) is due to the work of pressure forces.
(72)d4x0 = ⌧ d⌧ d& dx dy grows proportionally to ⌧ .
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Remarks:

⇤ In a perfect fluid the entropy is conserved: dµ[s(x)uµ(x)] = 0, see Eq. (X.22), with s the en-
tropy density. This equation can be recast in the form uµ(x) dµs(x) = �s(x) dµuµ(x), which using
Eq. (XI.9) becomes

@⌧s(x) = �
s(x)

⌧
. (XI.15)

This equation leads at once to s(x) / 1/⌧ , with the simple interpretation that the total entropy in
a comoving fluid volume, proportional to ⌧s(x), remains constant in the evolution.

⇤ Ditto for conserved charges: the conservation equation dµN
µ
a (x) = 0 [Eq. (X.2)] together with

the constitutive relation Nµ
a (x) = na(x)uµ(x) [Eq. (X.17a)] of perfect fluids result in

@⌧na(x) = �
na(x)

⌧
. (XI.16)

⇤ Bjorken’s ansatz (XI.1) for the flow velocity means that an observer Ov comoving with the fluid
at a given point—being say at time t0 at position z0 with velocity v = vz(t0, z0) = z0/t0—actually
moves with constant velocity v with respect to the reference frame R0. If R0 is inertial, then Ov

defines another inertial frame Rv: systems of Minkowski coordinates (with parallel-oriented axes)
in the two frames are related by a Lorentz boost along the z-direction with velocity v. Instead
of v, such a boost is often characterized by its rapidity ⇠ ⌘ artanh v = 1

2 ln
1+v

1�v
. One sees that

the boost rapidity ⇠ is precisely the space-time rapidity & of the point at which Ov is sitting. In
turn, the statements that the fluid velocity is independent of & [Eq.(XI.5)] and that this also holds
for the locally-measured thermodynamic quantities [(XI.13)] means that all comoving observer Ov,
irrespective of their velocity v, view the flow in the same way. The Bjorken flow is thus said to be
(longitudinally) boost invariant.

By assuming a simple equation of state, one can derive further results. Let us thus assume that
the pressure and energy density are proportional to each other, with a constant—i.e. time- and
position-independent—proportionality factor:

P (x) = c2s✏(x). (XI.17)

For instance, P = ✏/3 for an ideal gas of ultrarelativistic particles without conserved charge (see
Appendix X.C). The notation c2s is not arbitrary but corresponds to the fact that cs is indeed the
(phase) velocity of sound waves in the fluid.

With this equation of state, Eq. (XI.12a) leads at once to

✏(x) /
1

⌧1+c2s
, (XI.18)

i.e. ✏(x) / 1/⌧4/3 for an ideal ultrarelativistic gas. That is, the energy density decreases faster than
the entropy density—due to the work exerted by pressure.

If one now combines the equation of state (XI.17), the Gibbs–Duhem equation (in absence of
conserved charge) dP = s dT , and the fundamental relation ✏ = Ts� P , one finds

dP = c2s d✏ =
✏+ P
T

dT.

Rewriting the numerator of the rightmost term as (1 + c2s)✏, there comes

d✏

✏
=

1 + c2s
c2s

dT

T
.

This yields ✏ / T 1+c
�2
s , which together with relation (XI.18) gives

T (x) /
1

⌧ c2s
, (XI.19)
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i.e. T (x) / 1/⌧1/3 for an ideal ultrarelativistic gas. Since we found earlier that the energy density
of such a system decreases as ⌧�4/3, the behavior of temperature is consistent with the thermal
equation of state " / T 4 (and with s / T 3).

:::::::
XI.2.1 c

:::::::::::::::::::::::::::::
First-order dissipative fluid

to be added soon

XI.2.2 Landau flow
[55, 56]

Nicolas Borghini
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