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Under a number of “extreme conditions”—for instance inside compact astrophysical objects, in
the early Universe, or in high-energy collisions of heavy nuclei(59)—the “atoms” constituting a fluid
can acquire very high kinetic energies, that become comparable to their (rest) mass energy. A
non-relativistic description of the medium is then no longer appropriate, and must be replaced by a
relativistic model. Some introductory elements of such a description are presented in this Chapter—
in which the basic laws governing the dynamics of relativistic fluids are formulated and discussed—,
and the following one—which will deal with a few simple analytically tractable solutions of the
equations of motions.

As in the non-relativistic case, the basic equations governing the motion of a fluid in the rel-
ativistic regime are nothing but formulations of the most fundamental laws of physics, namely
conservation laws for “particle number”—in fact, for the various conserved quantum numbers car-
ried by the fluid atoms—, and for energy and momentum (Sec. X.1).

Precisely because the equations simply express general conservation laws, they are not very
specific, and contain at first too many degrees of freedom to be tractable. To make progress, it is
necessary to introduce models for the fluid under consideration, leading for instance to distinguishing
between perfect and dissipative fluids. A convenient way to specify the constitutive equations
characteristic of such models is to do so in terms of a fluid four-velocity, which generalizes the
non-relativistic flow velocity, yet in a non-unique way (Sec. X.2).

(59)... as performed at the CERN Large Hadron Collider (LHC) or at the dedicated Relativistic Heavy Ion Collider
(RHIC) at the Brookhaven National Laboratory.
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Such a fluid four-velocity also automatically singles out a particular reference frame, the local
rest frame, in which the conserved currents describing the physics of the fluid take a simpler form,
whose physical interpretation is clearer. The perfect fluids are thus those whose properties at each
point are spatially isotropic in the corresponding local rest frame, from which there follows that
the conserved currents can only depend on the flow four-velocity, not on its derivatives (Sec. X.3).
Conversely, when the conserved currents involve (spatial) gradients of the fluid four-velocity, these
derivatives signal real fluids with dissipative effects (Sec. X.4).

Two topics that lie beyond the main stream of this Chapter are given in appendices, namely the
expression of the conserved currents of relativistic fluid dynamics in terms of underlying microscopic
quantities (Sec. X.A) and a discussion of relativistic kinematics (Sec. X.B).

Throughout this Chapter and the following one, the fluids occupy domains of the four-dimensional
Minkowski(ax) space-time M 4 of Special Relativity. The position of a generic point of M 4 will be
designated by a 4-vector x. Given a reference frame R and a system of coordinates, those of x will
be denoted by {xµ} ⌘ (x0, x1, x2, x3)—where in the case of Minkowski coordinates(60) x0 = ct with
t the time measured by an observer at rest in R.

For the metric tensor g on M 4, we use the “mostly plus” convention, with signature (�,+,+,+),
i.e. in the case of Minkowski coordinates x0 = �x0 while xi = xi for i = 1, 2, 3. Thus, time-like
resp. space-like 4-vectors have a negative resp. positive semi-norm.

X.1 Conservation laws
As stated in the introduction, the equations governing the dynamics of fluids in the relativistic
regime, just as in the non-relativistic case, embody conservation principles—or more generally,
balance equations. More precisely, the usual fundamental equations of relativistic fluid dynamics
are differential formulations of these laws. Instead of proceeding as in Chap. III, in which the local
formulations were derived from integral ones, we shall hereafter postulate the differential laws, and
check or argue that they lead to the expected macroscopic behavior.

Starting from the local level is more natural here, since one of the tenets underlying relativistic
theories, as e.g. quantum field theory, is precisely locality—the absence of action at distance—
besides causality. Thus, both conservation equations (X.2) and (X.7) actually emerge as those
expressing the invariance of microscopic theories under specific transformations, involving asso-
ciated Noether currents.

We first discuss the conservation of so-called “charges” (§ X.1.1), then that of energy and momentum,
which in a relativistic context are inseparable (§ X.1.2).

X.1.1 Charge conservation

The conservation law that was discussed first in the Chapter III introducing the equations of
non-relativistic hydrodynamics was that of mass, which, in the case of a single-component fluid,
is fully equivalent to the conservation of particle number. In a relativistic system, the number of
particles is strictly speaking not conserved, even if the system is closed. Indeed, thanks to the
high kinetic energies available, particle–antiparticle pairs can continuously either be created, or
annihilate.
(60)We shall call Minkowski coordinates the analog on the space-time M 4 of the Cartesian coordinates on Euclidean

spaceE 3, i.e. those corresponding to a set of four mutually orthogonal 4-vectors (e0, e1, e2, e3) such that the metric
tensor has components gµ⌫ = eµ ·e⌫ = diag(�1,+1,+1,+1) for µ, ⌫ = 0, 1, 2, 3. They are also alternatively referred
to as Lorentz (ay)coordinates.

(ax)H. Minkowski, 1864–1909 (ay)H. A. Lorentz, 1853–1926
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If the particles carry some conserved additive quantum number—as e.g. electric charge or baryon
number—, then the value of the quantum number carried by an antiparticle is the negative of that
of the corresponding particle. Accordingly, this quantum number is (by definition!) conserved in
both creation and annihilation processes.

Throughout this Chapter and the following, such a conserved additive quantum number will be
called a “charge”, where the reader should beware that this does not necessarily mean the electric
charge. Similarly, we shall use the designations “charge (number) density” or “charge flux density”.
Since there may be several different conserved charges in a given fluid, the corresponding densities
will possibly be labeled with an index(61) a—which should not be confused with a coordinate index—
and accordingly called “charge of type a”.

:::::::
X.1.1 a

:::::::::::::::::::::::::::::::::::::::::::
Local formulation of charge conservation

By definition, the local charge (number) density a(t,~r) in a fluid is such that the product
a(t,~r) d3~r represents the net amount of charge of type a in the infinitesimal spatial volume d3~r

about position ~r at time t.
Since the volume element d3~r depends on the reference frame in which it is measured—remember

that in special relativity there is the length contraction phenomenon—, this is also the case of the
charge density a(t,~r), to ensure that the total charge of type a in d3~r remains independent of the
reference frame. Hereafter, a(t,~r) will also be denoted by a(x).

The charge flux density (or current) ~|Na
(t,~r) is defined in a similar way, as the amount of charge

of type a that crosses a unit area per unit time interval. Since both “unit area” and “unit time
interval” in this definition are reference frame-dependent concepts, ~|Na

(t,~r) also depends on the
reference frame in which it is measured.

Together, a(x) and ~|Na
(x) build up a charge (number) four-current (lxxiii) Na(x), whose contravari-

ant Minkowski components at every point x are N0
a (x) = c a(x), N i

a(x) = ji
Na
(x) for i = 1, 2, 3. This

is conveniently summarized in the form

Na(x) =

✓
c a(x)
~|Na

(x)

◆
(X.1a)

or, somewhat improperly,

Nµ

a (x) =

✓
c a(x)
~|Na

(x)

◆
. (X.1b)

With the help of the charge four-current, the local formulation of the conservation of charge of
type a in the motion of the system reads, using coordinates

dµN
µ

a (x) = 0, (X.2a)

where dµ ⌘ d /dxµ denote the components of the 4-gradient. Denoting the latter, which is a
one-form, by d, one may write the even shorter “geometric” (i.e. coordinate-invariant) equation

d · Na(x) = 0, (X.2b)

with d · the four-divergence.

Remarks:

⇤ Whether Na(x) defined by Eq. (X.1) is a 4-vector—that is, whether it behaves as it should under
Lorentz transformations—is at first far from clear. That a(x) d3~r need be a number—i.e. a Lorentz
scalar, like d4x = dx0 d3~r—suggests that a(x) should transform like the time-like component of a
(61)mostly in subscript

(lxxiii)(Ladungs-)Viererstrom
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4-vector. Yet it is admittedly not clear that the associated spatial part should be the particle flux
density.
We shall see in § X.3.3 that assuming that there exists a 4-vector field obeying the conservation
equation (X.2) leads in the non-relativistic limit to the above interpretation of its time-like and
space-like parts, which may be viewed as a justification.

A better argument is to introduce the particle number 4-current from a microscopic definition,
see App. X.A.1. Yet strictly speaking, this goes beyond the fluid-dynamical framework.

⇤ If Minkowski coordinates {xµ} are used, the components of the 4-gradient d are simply the partial
derivatives @µ ⌘ @ /@xµ, so that Eq. (X.2a) becomes @µN

µ
a (x) = 0.

:::::::
X.1.1 b

:::::::::::::::::::
Global formulation

Consider in M 4 a space-like 3-dimensional hypersurface ⌃—i.e. a hypersurface at every point
of which the normal 4-vector is time-like—which extends far enough so that the whole fluid passes
through it in its motion; that is, ⌃ intercepts the worldlines of all fluid particles. Since ⌃ is 3-
dimensional, it may be parameterized (at least in the vicinity of each of its points) by parameters
↵, �, �.

-x
1

6t

�� x
2 ⌃

6
6

6

6
6

6

Figure X.1

The total amount Na of charge of type a in the fluid is the flux of the charge number 4-current
Na(x) across ⌃

Na =

Z

⌃
Nµ

a (x) d
3�µ =

Z

⌃
Na(x) · d

3�, (X.3)

where d3�µ denotes the components of the 3-hypersurface element

d3�µ ⌘
1

3!

p
� detg ✏µ⌫⇢�

dx⌫

d↵

dx⇢

d�

dx�

d�
d↵ d� d� (X.4)

with ✏µ⌫⇢� the four-dimensional Levi-Civita symbol, with the convention ✏0123 = +1.(62)

Let ⌦ denote a 4-volume in M 4, and @⌦ its 3-surface. Applying the Gauss theorem, the flux
of the charge number 4-current across @⌦ is the integral of the 4-divergence of Na(x) over ⌦

I

@⌦
Na(x) · d

3� =

Z

⌦
d · Na(x) d

4x, (X.5)

where the right member vanishes thanks to the local expression (X.2) of charge conservation. Split-
ting @⌦ into two space-like parts through which charges enter resp. leave ⌦ in their motion—the
technical criterion is the sign of Na(x) · d3�—, one finds that there are as many charge carriers that
leave as those that enter, which expresses charge conservation globally.

(62)This choice is not universal: the alternative convention ✏0123 = +1 results in ✏0123 < 0 due to the odd number of
minus signs in the signature of the metric tensor.
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X.1.2 Energy-momentum conservation
In a relativistic theory, energy and momentum constitute the temporal and spatial components

of a four-vector, the four-momentum. To express the local conservation—in the absence of external
forces—of the latter, the densities and flux densities of energy and momentum at each space-time
point x must be combined into a four-tensor of degree 2, the energy-momentum tensor(lxxiv)—also
called stress-energy tensor—TTT(x), of type

�
2
0

�
.

This energy-momentum tensor(63) may be defined by the physical content of its 16 Minkowski
components Tµ⌫(x) in a given reference frame R:

• T 00(x) is the energy density;
• cT 0j(x) is the j-th component of the energy flux density, with j = 1, 2, 3;

•
1

c
T i0(x) is the density of the i-th component of momentum, with i = 1, 2, 3;

• T ij(x) for i, j = 1, 2, 3 is the momentum flux-density tensor.

(X.6)

All physical quantities are to be measured with respect to the reference frame R.

Remarks:
⇤ The similarity of the notations TTT resp. TTT for the energy-momentum four-tensor resp. the three-

dimensional momentum flux-density tensor is not accidental! The former is the natural general-
ization to the 4-dimensional relativistic framework of the latter, just like four-momentum p, with
components pµ is the four-vector associated to the three-dimensional momentum ~p. That is, the
3-tensor TTT is the spatial part of the 4-tensor TTT, just like momentum ~p is the spatial part of four-
momentum p.

⇤ Starting from a microscopic description of the fluid, one can show that the energy-momentum
tensor is symmetric, i.e. Tµ⌫(x) = T ⌫µ(x) for all µ, ⌫ = 0, 1, 2, 3. Accordingly, only 10 of the 16
entries of TTT are independent.

In the absence of external force acting on the fluid, the local conservation of the energy-
momentum tensor reads component-wise

dµT
µ⌫(x) = 0 8⌫ = 0, 1, 2, 3, (X.7a)

which represents four equations: the equation with ⌫ = 0 is the conservation of energy, while the
equations dµTµj(x) = 0 for j = 1, 2, 3 are the components of the momentum conservation equation.

In geometric formulation, Eq. (X.7a) becomes
d ·TTT(x) = 0. (X.7b)

This is exactly the same form as Eq. (X.2b), just like Eqs. (X.2a) and (X.7a) are similar, up to the
difference in the tensorial degree of the conserved quantity.

As in § X.1.1 b, one associates to the energy-momentum tensor TTT(x) a 4-vector P by

P ⌘

Z

⌃
TTT(x) · d3� , Pµ =

Z

⌃
Tµ⌫(x) d3�⌫ , (X.8)

with ⌃ a space-like 3-hypersurface. P represents the total 4-momentum crossing ⌃, and invoking
the Gauss theorem, Eq. (X.7) implies that it is a conserved quantity.

X.1.3 Fundamental equations in the presence of sources
This may come at some point.

(63)As in the case of the charge number 4-current, the argument showing that TTT(x) is a Lorentz tensor is to define it
microscopically as a tensor—see App. X.A.2—and to later interpret the physical meaning of the components.

(lxxiv)Energieimpulstensor
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