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be derived to describe the fluid motion in the thin layer close to a boundary of the flow, in which
the influence of this boundary plays a significant role (Sec V.4).

Eventually, the viscosity-induced modifications to the dynamics of vorticity (Sec. V.5) are pre-
sented.

V.1 Statics and steady laminar flows of a Newtonian fluid
In this Section, we first write down the equations governing the statics of a Newtonian fluid (§ V.1.1),
then we investigate a few idealized stationary laminar fluid motions, in which the velocity field is
entirely driven by the no-slip condition at boundaries (Secs. V.1.2–V.1.4).

V.1.1 Static Newtonian fluid
Consider a motionless [~v(t,~r) = ~0] Newtonian fluid in an external gravitational potential �(~r)—

or more generally, submitted to conservative volume forces such that
~fV (t,~r) = �⇢(t,~r)~r�(t,~r). (IV.1)

The three coupled equations (III.9), (III.31) and (III.36) respectively simplify to

@⇢(t,~r)

@t
= 0, (V.1a)

which means that the mass density ⇢(t,~r) is time independent,
~rP (t,~r) = �⇢(t,~r)~r�(t,~r), (V.1b)

identical to the fundamental equation (IV.2) governing the hydrostatics of a perfect fluid, and

@e(t,~r)

@t
= ~r ·

⇥
(t,~r)~rT (t,~r)

⇤
, (V.1c)

which describes the transport of energy without macroscopic fluid motion, i.e. non-convectively,
thanks to heat conduction.

Given an equation of state relating the internal energy density to the temperature, Eq. (V.1c)
can become an equation for T (t,~r) only, in particular if the various thermodynamic and transport
coefficients involved are assumed to be uniform across the fluid.

V.1.2 Plane Couette flow
In the example of this Section and the next two ones (Secs. V.1.3–V.1.4), we consider steady,

incompressible, laminar flows, in absence of significant volume forces. Since the mass density ⇢ is
fixed, thus known, only four equations are needed to determine the flow velocity~v(~r) and pressure
P (~r), the simplest possibility being to use the continuity and Navier–Stokes equations. In the
stationary and incompressible regime, these become

~r ·~v(~r) = 0 (V.2a)
⇥
~v(~r) · ~r

⇤
~v(~r) = �

1

⇢
~rP (~r) + ⌫4~v(~r), (V.2b)

with ⌫ the kinematic shear viscosity, assumed to be the same throughout the fluid.

The so-called (plane) Couette flow(ab) is, in its idealized version, the motion of a viscous fluid
between two infinitely extended plane plates, as represented in Fig. V.1, where the lower plate is
at rest, while the upper one moves in its own plane with a constant velocity ~u. It will be assumed
(ab)M. Couette, 1858–1943
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Figure V.1 – Setup of the plane Couette flow.

that the same pressure P1 holds ”at infinity” in any direction in the (x, z)-plane.
As the flow is assumed to be laminar, the geometry of the problem is invariant under arbitrary

translations in the (x, z)-plane. This is automatically taken into account by the ansatz~v(~r) = v(y)~ex
for the flow velocity. Inserting this form in Eqs. (V.2) yields

@v(y)

@x
= 0, (V.3a)

v(y)
@v(y)

@x
~ex = �

1

⇢
~rP (~r) + ⌫

d2v(y)

dy2
~ex. (V.3b)

With the ansatz for ~v(~r), the first equation is automatically fulfilled, while the term on the
left hand side of the second equation vanishes. Projecting the latter on the y and z directions
thus yields @P (~r)/@y = 0—expressing the assumed absence of sizable effects from gravity—and
@P (~r)/@z = 0—since the problem is independent of z. Along the x direction, one finds

@P (~r)

@x
= ⌘

d2v(y)

dy2
. (V.4)

Since the right member of this equation is independent of x and z, a straightforward integration gives
P (~r) = ↵(y)x+ �(y), where the functions ↵, � only depend on y. These functions are determined
by the boundary conditions: from P (x=�1) = P (x=1) = P1 follow ↵(y) = 0, �(y) = P1, and
Eq. (V.4) eventually simplifies to

d2v(y)

dy2
= 0.

This yields v(y) = �y + �, with two integration constants � and � that are again fixed by the
boundary conditions. At each plate, the relative velocity of the fluid with respect to the plate must
vanish:

v(y=0) = 0, v(y=h) = |~u|,

leading to � = 0 and � = |~u|/h. All in all, the velocity thus depends linearly on y

~v(~r) =
y

h
~u for 0  y  h.

Consider now a surface element d2S. The contact force d2 ~Fs exerted on it by the fluid follows
from the Cauchy stress tensor, whose Cartesian components (III.27c) here read

�ij(~r) = �P (~r)�ij + ⌘


@vi(~r)

@xj
+

@vj(~r)

@xi

�
⇠=

0

B@
�P1 ⌘ |~u|

h
0

⌘ |~u|
h

�P1 0
0 0 �P1

1

CA .

The force per unit surface on the motionless plate at y = 0, corresponding to a unit normal vector
~en(~r) = ~ey, is

d2 ~Fs(~r)

d2S
= ~Ts(~r) =

 3X

i,j=1

�ij(~r)~ei ⌦~ej

�
·~ey =

3X

i,j=1

�ij(~r)
�
~ej ·~ey

�
~ei =

0

@
⌘ |~u|

h

�P1
0

1

A .
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Due to the friction exerted by the fluid, the lower plate is dragged by the flow in the (positive) x
direction.

Remark: The tangential stress on the lower plate is ⌘~u/h, proportional to the shear viscosity:
measuring the tangential stress with known |~u| and h yields a measurement of ⌘. In practice,
this measurement rather involves the more realistic cylindrical analog to the above plane flow, the
so-called Couette–Taylor flow .(ac)

V.1.3 Plane Poiseuille flow
Let us now consider the flow of a Newtonian fluid between two motionless plane plates with a

finite length along the x direction—yet still infinitely extended along the z direction—, as illustrated
in Fig. V.2. The pressure is assumed to be different at both ends of the plates in the x direction,
leading to the presence of a pressure gradient along x.
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Figure V.2 – Flow between two motionless plates for P 1 > P 2, i.e. �P > 0.

Assuming for the flow velocity ~v(~r) the same form v(y)~ex, independent of x, as in the case of
the plane Couette flow, the equations of motion governing v(y) and pressure P (~r) are the same as
in the previous § V.1.2, namely Eqs. (V.3)–(V.4). The boundary conditions are however different.
Thus, P 1 6= P 2 results in a finite constant pressure gradient along x, ↵ = @P (~r)/@x = ��P/L 6= 0,
with �P ⌘ P 1 � P 2 the pressure drop. Equation (V.4) then leads to

v(y) = �
1

2⌘

�P
L

y2 + �y + �,

with � and � two new constants.
The “no-slip” boundary conditions for the velocity at the two plates read

v(y=0) = 0, v(y=h) = 0,

which leads to � = 0 and � =
1

2⌘

�P
L

h. The flow velocity thus has the parabolic profile

v(y) =
1

2⌘

�P
L

⇥
y(h� y)

⇤
for 0  y  h, (V.5)

directed along the direction of the pressure gradient.

Remark: The flow velocity (V.5) becomes clearly problematic in the limit ⌘ ! 0! Tracing the
problem back to its source, the equations of motion (V.3) cannot hold with a finite pressure gradient
along the x direction and a vanishing viscosity. One quickly checks that the only possibility in the
case of a perfect fluid is to drop one of the assumptions, either incompressibility or laminarity.

V.1.4 Hagen–Poiseuille flow
The previous two examples involved plates with an infinite length in at least one direction,

thus were idealized constructions. In contrast, an experimentally realizable fluid motion is that of
the Hagen–Poiseuille flow ,(ad) in which a Newtonian fluid flows under the influence of a pressure
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Figure V.3 – Setup of the Hagen–Poiseuille flow.

gradient in a cylindrical tube with finite length L and radius a (Fig. V.3). Again, the motion is
assumed to be steady, incompressible and laminar.

Using cylindrical coordinates, the ansatz ~v(~r) = v(r)~ez with r =
p
x2 + y2 satisfies the conti-

nuity equation ~r ·~v(~r) = 0 and gives for the incompressible Navier–Stokes equation

~rP (~r) = ⌘4~v(~r) ,

8
>><

>>:

@P (~r)

@x
=

@P (~r)

@y
= 0

@P (~r)

@z
= ⌘


@2v(r)

@x2
+

@2v(r))

@y2

�
= ⌘


d2v(r)

dr2
+

1

r

dv(r)

dr

�
.

(V.6)

The right member of the equation in the second line is independent of z, implying that the pressure
gradient along the z direction is constant. Using the boundary conditions yields

@P (~r)

@z
= �

�P
L

,

with �P ⌘ P 1 � P 2. The z component of the Navier–Stokes equation (V.6) thus becomes
d2v(r)

dr2
+

1

r

dv

dr
= �

�P
⌘L

. (V.7)

As always, this linear differential equation is solved in two successive steps, starting with the
associated homogeneous equation. To find the general solution of the latter, one may introduce
�(r) ⌘ dv(r)/dr, which obeys the simpler equation

d�(r)

dr
+

�(r)

r
= 0.

The generic solution is ln�(r) = � ln r+const., i.e. �(r) = A/r with A a constant. This then leads
to v(r) = A ln r +B with B an additional constant.

A particular solution of the inhomogeneous equation (V.7) is v(r) = Cr2 with C = ��P/4⌘L.
The general solution of Eq. (V.7) is then given by

v(r) = A ln r +B �
�P
4⌘L

r2,

where the two integration constants still need to be determined.
To have a regular flow velocity at r = 0, the constant A should vanish. In turn, the boundary

condition at the tube wall, v(r=a) = 0, determines the value of the constant B = (�P/4⌘L)a2. All
in all, the velocity profile thus reads

v(r) =
�P
4⌘L

�
a2 � r2

�
for r  a. (V.8)

This is again parabolic, with~v pointing in the same direction as the pressure drop.

The mass flow rate across the tube cross section follows from a straightforward integration:

Q =

Z
a

0
⇢v(r) 2⇡r dr = 2⇡⇢

�P
4⌘L

Z
a

0

�
a2r � r3

�
dr = 2⇡⇢

�P
4⌘L

a4

4
=

⇡⇢a4

8⌘

�P
L

. (V.9)

This result, known as Hagen–Poiseuille law (or equation), shows that the mass flow rate is propor-
tional to the pressure drop per unit length.
(ac)G. I. Taylor, 1886–1975 (ad)G. Hagen, 1797–1884
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Remarks:

⇤ The Hagen–Poiseuille law only holds under the assumption that the flow velocity vanishes at the
tube walls. The experimental confirmation of the law—which was actually deduced from experiment
by Hagen (1839) and Poiseuille (1840)—is thus a proof of the validity of the no-slip assumption for
the boundary condition.

⇤ The mass flow rate across the tube cross section may be used to define the average flow velocity
such that Q = ⇡a2⇢hvi with

hvi ⌘
1

⇡a2

Z
a

0
v(r) 2⇡r dr =

1

2
v(r=0).

The Hagen–Poiseuille law then expresses a proportionality between the pressure drop per unit length
and hvi in a laminar flow.

Viewing �P/L as the “generalized force” driving the motion, the corresponding “response” hvi of
the fluid is thus linear.

The relation is quite different in the case of a turbulent flow with the same geometry: for instance,
measurements by Reynolds [21] gave �P/L / hvi1.722.

V.2 Dynamic similarity
The incompressible motion of a Newtonian fluid is governed by the kinetic condition ~r ·~v(t,~r) = 0,
the continuity equation (III.9), and the incompressible Navier–Stokes equation (III.32). In order to
determine the relative influence of the various terms of the latter, it is often convenient to consider
dimensionless forms of the equation, which leads to the introduction of a variety of dimensionless
numbers.

For instance, the influence of the fluid mass density ⇢ and shear viscosity ⌘, which are uniform
throughout the fluid, on a flow in the absence of volume forces is entirely encoded in the Reynolds
number (§ V.2.1). Allowing for volume forces, either due to gravity or to inertial forces, their relative
importance is controlled by similar dimensionless parameters (§ V.2.2).

Let Lc resp. vc be a characteristic length resp. velocity for a given flow. Since the Navier–Stokes
equation itself does not involve any parameter with the dimension of a length or a velocity, both
scales are controlled by “geometry”, i.e. by the boundary conditions for the specific problem under
consideration. Thus, Lc may be the size (diameter, side length) of a tube in which the fluid flows
or of an obstacle around which the fluid moves. In turn, vc may be the uniform velocity far from
such an obstacle.

With the help of Lc and vc, one may rescale the physical quantities in the problem, so as to
obtain dimensionless quantities, which will hereafter be denoted with ⇤:

~r⇤ ⌘
~r

Lc

, ~v⇤ ⌘
~v

vc
, t⇤ ⌘

t

Lc/vc
, P ⇤

⌘
P � P 0

⇢v2c
, (V.10)

where P 0 is some characteristic value of the (unscaled) pressure.

V.2.1 Reynolds number
Consider first the incompressible Navier–Stokes equation in the absence of external volume

forces. Rewriting it in terms of the dimensionless variables and fields (V.10) yields

@~v⇤(t⇤,~r⇤)

@t⇤
+
⇥
~v⇤(t⇤,~r⇤) · ~r⇤⇤~v⇤(t⇤,~r⇤) = �~r⇤P ⇤(t⇤,~r⇤) +

⌘

⇢vcLc

4
⇤~v⇤(t⇤,~r⇤), (V.11)
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