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The observer traveling with the same velocity as the local fluid velocity will be hereafter referred to
as comoving observer , and the reference frame in which she is sitting as local rest frame.

Using definitions (III.21), one easily checks that the Euler equation (III.18) is equivalent to the
balance equations (for i = 1, 2, 3)
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with f i

V
the i-th component of the volume force density and d /dxi the covariant derivatives (see

Appendix ??), that coincide with the partial derivatives in Cartesian coordinates.

Proof: For the sake of brevity, the (t,~r)-dependence of the various fields will not be specified.
With the product rule and the definition of TTTij , one finds
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where we have used
P

j g
ijd/dxj = d/dxi. The first term between square brackets vanishes

thanks to the continuity equation (III.9). In turn, the second term is precisely the i-th component
of the left member of the Euler equation (III.18), i.e. it equals the i-th component of ~fV minus
the third term, which represents the i-th component of ~rP . ⇤

In tensor notation, Eq. (III.24a) reads
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where we have used the symmetry of the momentum flux tensorTTT, while the action of the divergence
on a

�
2
0

�
-tensor is defined through its components, which is to be read off Eq. (III.24a).

III.3.3 Newtonian fluid: Navier–Stokes equation
In a real moving fluid, there are friction forces that contribute to the transport of momentum

between neighboring fluid layers when the latter are in relative motion. Accordingly, the momentum
flux-density tensor is no longer given by Eq. (III.21b) or (III.22), but now contains extra terms,
involving derivatives of the flow velocity. Accordingly, the Euler equation must be replaced by an
alternative dynamical equation, including the friction forces.

:::::::
III.3.3 a

::::::::::::::::::::::::::::::::::::::::::::::
Momentum flux density in a Newtonian fluid

The momentum flux density (III.21b) in a perfect fluid only contains two terms—one propor-
tional to the components gij of the inverse metric tensor, the other proportional to vi(t,~r) vj(t,~r).
Since the coefficients in front of these two terms could a priori depend on~v2, this represents the most
general symmetric tensor of degree 2 which can be constructed with the help of the flow velocity
only.

If the use of terms that depend on the spatial derivatives of the velocity field is also allowed, the
components of the momentum flux-density tensor can be of the following form, where for the sake
of brevity the variables t and ~r are omitted

TTTij = Pgij + ⇢vi vj +A
dvi

dxj
+B

dvj

dxi
+O

 
d2vi

dxj dxk

!
+ · · · , (III.25)

with coefficients A, B that depend on i, j and on the fluid under consideration.
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This ansatz for TTTij , as well as the form of the energy flux density involved in Eq. (III.36) below,
can be “justified” by starting from a microscopic kinetic theory of the fluid and writing the
solutions of the corresponding equation of motion as a specific expansion—which turns out to
be in powers of the Knudsen number (I.4). This also explains why terms of the type vi@P/@xj

or vi@T/@xj , with T the temperature, were not considered in Eq. (III.25).
Despite these theoretical considerations, in the end the actual justification for the choices of
momentum or energy flux density is the agreement with the measured behavior of fluids.

As discussed in § I.1.3, the description of a system of particles as a continuous medium, and
in particular as a fluid, in local thermodynamic equilibrium, rests on the assumption that the
macroscopic quantities of relevance for the medium vary slowly both in space and time. Accordingly,
(spatial) gradients should be small: the third and fourth terms in Eq. (III.25) should thus be
on the one hand much smaller than the first two ones, on the other hand much larger than the
rightmost term as well as those involving higher-order derivatives or of powers of the first derivatives.
Neglecting these smaller terms, one obtains “first-order dissipative fluid dynamics”, which describes
the motion of Newtonian fluids—this actually defines the latter.

Using the necessary symmetry of TTTij , the third and fourth terms in Eq. (III.25) can be rewritten
as the sum of a traceless symmetric contribution and a tensor proportional to the inverse metric
tensor. This leads to the momentum flux-density tensor

TTTij(t,~r) = P (t,~r) gij(t,~r) + ⇢(t,~r)vi(t,~r)vj(t,~r)
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� ⇣(t,~r)gij(t,~r)~r ·~v(t,~r).

In geometric formulation, this reads

TTT(t,~r) = P (t,~r)g�1(t,~r) + ⇢(t,~r)~v(t,~r)⌦~v(t,~r) +⇡⇡⇡(t,~r) (III.26b)

where dissipative effects are encoded in the viscous stress tensor (xxxvii)

for a Newtonian fluid:
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with DDD(t,~r) the strain rate tensor discussed in § II.1.3. Component-wise, this reads
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In terms of the traceless rate-of-shear tensor (II.17b) or of its components (II.17d), one may alter-
natively write
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This viscous stress tensor involves two novel characteristics of the medium, so-called transport
coefficients, namely:

• the (dynamical) shear viscosity(xxxviii) ⌘, which multiplies the traceless symmetric part of the
velocity gradient tensor, i.e. the conveniently termed rate-of-shear tensor;

• the bulk viscosity , also called second viscosity ,(xxxix) ⇣, which multiplies the volume-expansion
part of the velocity gradient tensor, i.e. the term proportional to ~r ·~v(t,~r).

(xxxvii)viskoser Spannungstensor (xxxviii)Scherviskosität (xxxix)Dehnviskosität, Volumenviskosität, zweite Viskosität
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The two corresponding contributions represent a diffusive transport of momentum in the fluid—
representing a third type of transport besides the convective and thermal ones.

Remarks:

⇤ In the case of a Newtonian fluid, the viscosity coefficients ⌘ and ⇣ are independent of the flow
velocity. However, they still depend on the temperature and pressure of the fluid, so that they are
not necessarily uniform and constant in a real flowing fluid.

⇤ In an incompressible flow, ~r ·~v(t,~r) = 0, the last contribution to the momentum flux den-
sity (III.26) drops out. Thus, the bulk viscosity ⇣ only plays a role in compressible fluid motions.(6)

⇤ Expression (III.26c) or (III.26d) of the viscous stress tensor assumes implicitly that the fluid is
(locally) isotropic, since the coefficients ⌘, ⇣ are independent of the directions i, j.

:::::::
III.3.3 b

:::::::::::::::::::::::::::::::::::::
Surface forces in a Newtonian fluid

The Cauchy stress tensor corresponding to the momentum flux density (III.26) of a Newtonian
fluid is
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that is, using the form (III.26e) of the viscous stress tensor

���(t,~r) = �P (t,~r)g�1(t,~r) + 2⌘(t,~r)SSS(t,~r) + ⇣(t,~r)
⇥
~r ·~v(t,~r)

⇤
g�1(t,~r). (III.27b)

Component-wise, this becomes

�ij(t,~r) =

⇢
�P (t,~r)+


⇣(t,~r)�

2

3
⌘(t,~r)

�
~r·~v(t,~r)

�
gij(t,~r)+⌘(t,~r)


dvi(t,~r)

dxj
+
dvj(t,~r)

dxi

�
. (III.27c)

Accordingly, the mechanical stress vector on an infinitesimally small surface element situated at
point ~r with unit normal vector ~en(~r) reads
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with nj(~r) the coordinate of ~en(~r) along direction j. One easily identifies the two components of
this stress vector (cf. § I.4.1)

• the term proportional to
P

gi
j
nj~ei = ~en is the normal stress on the surface element. It consists

of the usual hydrostatic pressure term �P ~en, and a second contribution, proportional to the
local expansion rate ~r ·~v: in the compressible motion of a Newtonian—and more generally a
dissipative—fluid, the normal stress is thus not only given by �P ~en, but includes additional
contributions that vanish in the static case.

• the remaining term is the tangential stress, proportional to the shear viscosity ⌘. Accordingly,
the value of the latter can be deduced from a measurement of the tangential force acting on
a surface element, see § ??.

As in § III.3.2 a, the external contact forces acting on a fluid element delimited by a surface S

can easily be computed. Invoking the Stokes theorem yields
(6)As a consequence, the bulk viscosity is often hard to measure—one has to devise a compressible flow—so that it

is actually not so well known for many substances, even well-studied ones [13].
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with the local viscous friction force density
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:::::::
III.3.3 c

:::::::::::::::::::::::::
Navier–Stokes equation

Combining the viscous force (III.29b) with the generic equations (III.12), (III.14) and (III.15),
the application of Newton’s second law to a volume V of fluid leads to an identity between sums of
volume integrals. Since this relation holds for any volume V , it translates into an identity between
the integrands, namely
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for i = 1, 2, 3.
If the implicit dependence of the viscosity coefficients ⌘ and ⇣ on time and position is negligible,

one may take them outside of the spatial derivatives. As a result, one obtains the (compressible)
Navier (i)–Stokes(j) equation
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(III.31)

with 4 = ~r2 the Laplacian. This is a non-linear partial differential equation of second order, while
the Euler equation (III.18) is of first order.

The difference between the order of the equations is not a mere detail: while the Euler equation
looks like the limit ⌘, ⇣ ! 0 of the Navier–Stokes equation, this may not necessarily hold true
for their solutions. This is for instance due to the fact that their respective boundary conditions
differ.

In the case of an incompressible flow, the local expansion rate in the Navier–Stokes equa-
tion (III.31) vanishes, leading to the incompressible Navier–Stokes equation
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(i)C.-L. Navier, 1785–1836 (j)G. G. Stokes, 1819–1903
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with
⌫ ⌘ ⌘/⇢ (III.33)

the kinematic shear viscosity .

Remark: The dimension of the dynamic viscosity coefficients ⌘, ⇣ is M L�1 T�1 and the corresponding
unit in the SI system is the Poiseuille(k), abbreviated Pa · s. In contrast, the kinematic viscosity has
dimension L2 T�1, i.e. depends only on space and time, hence its denomination.

:::::::
III.3.3 d

::::::::::::::::::::::
Boundary conditions

At the interface between a viscous fluid, in particular a Newtonian one, and another body—be it
an obstacle in the flow, a wall containing the fluid, or even a second viscous fluid which is immiscible
with the first one—the relative velocity between the fluid and the body must vanish. This holds
not only for the normal component of the velocity (“impermeability” condition), as in perfect fluids,
but also for the tangential one, to account for the friction forces. The latter requirement is often
referred to as no-slip condition.

III.3.4 Higher-order dissipative fluid dynamics
Instead of considering only the first spatial derivatives of the velocity field in the momentum

flux-density tensor (III.25), one may wish to also include the second derivatives, or even higher
ones. Such assumptions lead to partial differential equations of motion, replacing the Navier–Stokes
equation, of increasing order: Burnett equation, super Burnett equation [14, 15].

The domain of validity of such higher-order dissipative fluid models is a priori larger than that of
first-order fluid dynamics, since it becomes possible to account for stronger gradients. On the other
hand, this is at the cost of introducing a large number of new parameters besides the transport
coefficients already present in Newtonian fluids. In parallel, the numerical implementation of the
model becomes more involved, so that a macroscopic description does not necessarily represent the
best approach.

III.4 Energy conservation, entropy balance
The conservation of mass and Newton’s second law for linear momentum lead to four partial dif-
ferential equations, one scalar—continuity equation (III.9)—and one vectorial—Euler (III.18) or
Navier–Stokes (III.31)—, describing the coupled evolutions of five fields: ⇢(t,~r), the three compo-
nents of~v(t,~r) and P (t,~r).(7) To fully determine the latter, a fifth equation is needed. For this last
constraint, there are several possibilities.

A first alternative is if some of the kinematic properties of the fluid flow are imposed a priori.
Thus, requiring that the motion should be steady or irrotational or incompressible. . . might suffice
to fully constrain the fluid flow for the geometry under consideration: we shall see several examples
in the next three Chapters.

A second possibility, which will also be illustrated in Chap. IV–??, is that of a thermodynamic
constraint: isothermal flow, isentropic flow. . . For instance, one sees in thermodynamics that in
an adiabatic process for an ideal gas, the pressure and volume of the latter obey the relation
PV � = constant, where � denotes the ratio of the heat capacities at constant pressure (CP ) and
constant volume (CV ). Since V is proportional to 1/⇢, this so-called “adiabatic equation of state”
provides the needed constraint relating pressure and mass density.

Eventually, one may argue that non-relativistic physics automatically implies a further conser-
vation law besides those for mass and linear momentum, namely energy conservation. Thus, using
(7)The density of volume forces ~fV or equivalently the corresponding potential energy per unit mass �, which stand

for gravity or inertial forces, are given “from the outside” and not counted as a degree of freedom.
(k)J.-L.-M. Poiseuille, 1797–1869
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fluid, the relation (III.34) expressing energy conservation locally, together with thermodynamic
relations, lead to the local conservation of entropy, expressed as
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⇤
= 0, (III.35)

where s(t,~r) is the entropy density, while s(t,~r)~v(t,~r) represents the entropy flux density. The
motion of a perfect fluid is thus automatically isentropic.

This equation, together with a thermodynamic relation, is sometimes more practical than the
energy conservation equation (III.34), to which it is however totally equivalent.

III.4.2 Energy conservation in Newtonian fluids
In a real fluid, there exist further mechanisms for transporting energy besides the convective

transport due to the fluid motion, namely diffusion, either of momentum or of energy:

• On the one hand, the viscous friction forces in the fluid, which already lead to the transport
of momentum between neighboring fluid layers moving with different velocities, exert some
work in the motion, which induces a diffusive transport of energy. This is accounted for by a
contribution ⇡⇡⇡ ·~v to the energy flux density—component-wise, a contribution

P
j
⇡i

j
vj to the

i-th component of the flux density—, with ⇡⇡⇡ the viscous stress tensor, given in the case of a
Newtonian fluid by Eq. (III.26c).

• On the other hand, there is also heat conduction from the regions with higher temperatures
towards those with lower temperatures. This transport is described by the introduction in
the energy flux density of a heat current(xl) ~|Q(t,~r) = �(t,~r)~rT (t,~r)—in accordance with
the local formulation of Fourier’s law ,(l) see e.g. Sec. 1.2.1 in Ref. [2]—, with  the heat
conductivity(xli) of the fluid.

Taking into account these additional contributions, the local formulation of energy conservation in
a Newtonian fluid reads
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(III.36)

with � the potential energy per unit mass due to conservative external volume forces. If the three
transport coefficients ⌘, ⇣ and  vanish, this equation simplifies to that for perfect fluids, Eq. (III.34).

Remark: The energy flux density can be read off Eq. (III.36), since it represents the term between
curly brackets. Dropping the external potential �, one can check that it can also be written as
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(xl)Wärmestromvektor (xli)Wärmeleitfähigkeit
(l)J. B. Fourier, 1768–1830
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with SSS(t,~r) the traceless symmetric rate-of-shear tensor. One recognizes the various physical sources
of energy transport.

III.4.3 Entropy balance in Newtonian fluids
In a real fluid, with viscous friction forces and heat conductivity, one can expect a priori that

the transformation of mechanical energy into heat will lead in general to an increase in entropy, at
least as long as one considers a closed and isolated system.

Consider a volume V of flowing Newtonian fluid, delimited by a surface S at each point ~r of
which the boundary conditions

~v(t,~r) ·~en(~r) = 0 and ~|Q(t,~r) ·~en(~r) = 0

hold, where ~en(~r) denotes the unit normal vector to S at ~r. Physically, these boundary conditions
mean than neither matter nor heat flows across the surface S, so that the system inside S is closed
and isolated. To completely exclude energy exchanges with the exterior of S, it is also assumed
that there are no external volume forces acting on the fluid inside volume V . We shall investigate
the implications of the continuity equation (III.10), the Navier–Stokes equation (III.31), and the
energy conservation equation (III.36) for the total entropy S of the fluid inside V . For the sake of
brevity, the variables t, ~r will be omitted in the remainder of this Section.

Starting with the energy conservation equation (III.36), the contribution
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where the continuity equation (III.9) was used.
As recalled in Appendix B, the fundamental thermodynamic relation U = TS � PV + µN gives on
the one hand e+ P = Ts+ µn , which leads to
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where the second identity follows from the Gibbs–Duhem relation dP = s dT + n dµ. On the other
hand, it leads to de = T ds+µ dn , which under consideration of the continuity equation for particle
number yields
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With the help of relations (III.38a)–(III.38c), the energy conservation equation (III.36) can be
rewritten as
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Multiplying the i-th component of Eq. (III.30b) by vi gives
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Subtracting this identity, summed over i = 1, 2, 3, from Eq. (III.38d), yields
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On the right hand side of this equation, one may use the identity
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, (III.40a)

which follows from the fact that both symmetric terms @vi/@xj and @vj/@xi from the left member
give the same contribution, while the term in gij yields a zero contribution, since it multiplies a
traceless term.
Additionally, one has
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All in all, Eqs. (III.39) and (III.40) lead to
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This may still be recast in the slightly more compact form
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(III.41b)

with SSS : SSS ⌘ SSSijSSSij the scalar obtained by doubly contracting the rate-of-shear tensor with itself.
This equation can then be integrated over the V occupied by the fluid:

• When computing the integral of the divergence term on the left hand side with the Stokes
theorem, it vanishes thanks to the boundary conditions imposed at the surface S;

• the remaining term in the left member is simply the time derivative dS/dt of the total entropy
of the closed system;

• if all three transport coefficients ⌘, ⇣,  are positive, then it is also the case of the three terms
on the right hand side.

One thus finds
dS

dt
� 0, in agreement with the second law of thermodynamics.

Remarks:

⇤ The previous derivation may be seen as a proof that the transport coefficients must be positive
to ensure that the second law of thermodynamics holds.

⇤ If all three transport coefficients ⌘, ⇣,  vanish, i.e. in the case of a non-dissipative fluid,
Eq. (III.41) simply reduces to the entropy conservation equation in perfect fluids (III.35).
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