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V.1 Sound waves
By definition, the phenomenon which in everyday life is referred to as “sound” consists of small
adiabatic pressure perturbations around a background flow, where adiabatic actually means that
the entropy remains constant. In the presence of such a wave, each point in the fluid undergoes
alternative compression and rarefaction processes. That is, these waves are by construction (parts
of) a compressible flow.

We shall first consider sound waves on a uniform perfect fluid at rest (§ V.1.1).
What then? Doppler effect? Rarefaction waves? Eventually, we discuss how viscous effects
in a Newtonian lead to the absorption of sound waves (§ V.1.4).

V.1.1 Sound waves in a uniform fluid at rest
Assuming that there are no external forces, a trivial solution of the dynamical equations of

perfect fluids is that with uniform and time independent mass density ⇢0 and pressure P 0, with a
vanishing flow velocity ~v0 = ~0. Assuming in addition that the particle number N0 in the fluid is
conserved, its total entropy has a fixed value S0. These conditions will represent the background
flow we consider hereafter.

With the various fields that were just specified, a perturbation (V.1) of this background flow
reads

⇢(t,~r) = ⇢0 + �⇢(t,~r), (V.2a)
P (t,~r) = P 0 + �P (t,~r), (V.2b)

~v(t,~r) =~0 + �~v(t,~r). (V.2c)
The necessary “smallness” of perturbations means for the mass density and pressure terms

|�⇢(t,~r)| ⌧ ⇢0, |�P (t,~r)| ⌧ P 0. (V.2d)

Regarding the velocity, the background flow does not explicitly specify a reference scale, with which
the perturbation should be compared. As we shall see below, the reference scale is actually implicitly
contained in the equation(s) of state of the fluid under consideration, and the condition of small
perturbation reads

|�~v(t,~r)| ⌧ cs (V.2e)
with cs the speed of sound in the fluid.

Inserting the fields (V.2) in the equations of motion (III.9) and (III.18) and taking into account
the uniformity and stationarity of the background flow, one finds
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The required smallness of the perturbations will help us simplify these equations, in that we
shall only keep the leading-order terms in an expansion in which we consider ⇢0, P 0 as zeroth-order
quantities while �⇢(t,~r), �P (t,~r) and �~v(t,~r) are small quantities of first order. Accordingly, the
third term in the continuity equation is presumably much smaller than the other two, and may
be left aside in a first approximation. Similarly, the contribution of �⇢(t,~r) and the convective
term within the curly brackets on the left hand side of Eq. (V.3b) may be dropped. The equations
describing the coupled evolutions of �⇢(t,~r), �P (t,~r) and �~v(t,~r) are thus linearized :
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To obtain a closed system of equations, a further relation between the perturbations is needed.
This will be provided by thermodynamics, i.e. by the implicit assumption that the fluid at rest is
everywhere in a state in which its pressure P is function of mass density ⇢, (local) entropy S, and
(local) particle number N , i.e. that there exists a unique relation P = P (⇢, S,N) which is valid at
each point in the fluid and at every time. Expanding this relation around the (thermodynamic)
point corresponding to the background flow, namely P 0 = P (⇢0, S0, N0), one may write
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where the derivatives are to be evaluated at the point (⇢0, S0, N0). Here, we wish to consider
isentropic perturbations at constant particle number, i.e. both �S and �N vanish, leaving
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For the partial derivative of the pressure, we introduce the notation
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(V.5)

where both sides actually depend on ⇢0, S0 and N0, yielding

�P = c2s �⇢.

This thermodynamic relation holds at each point of the fluid at each instant, so that one can now
replace ~r�P (t,~r) by c2s ~r�⇢(t,~r) in Eq. (V.4b):

⇢0
@�~v(t,~r)

@t
+ c2s ~r�⇢(t,~r) =~0. (V.4c)

The equations (V.4a), (V.4c) for the perturbations �⇢(t,~r) and �~v(t,~r) are linear first order
partial differential equations. Thanks to the linearity, their solutions form a vector space—at least
as long as no initial condition has been specified. One can for instance express the solutions as
Fourier transforms, i.e. superpositions of plane waves, characterized by their (angular) frequency !
and their wave vector ~k. Accordingly, we test the ansatz

�⇢(t,~r) = e�⇢(!,~k) e�i!t+i~k·~r, �~v(t,~r) = e�~v(!,~k) e�i!t+i~k·~r, (V.6)

with respective amplitudes e�⇢, e�~v that a priori depend on ! and ~k and are determined by the initial
conditions for the problem. In turn, ! and ~k are not necessarily independent from each other, as
we shall indeed find hereafter.

With this ansatz, Eqs. (V.4) become

�i! e�⇢(!,~k) + i⇢0~k · e�~v(!,~k) = 0 (V.7a)

�i!⇢0 e�~v(!,~k) + ic2s ~k e�⇢(!,~k) =~0. (V.7b)

From the second equation, the amplitude e�~v(!,~k) is proportional to ~k; in particular, it lies along
the same direction. That is, the inner product ~k · e�~v simply equals the product of the norms of the
two vectors.

Omitting from now on the (!,~k)-dependence of the amplitudes, the inner product of Eq. (V.7b)
with ~k—which does not lead to any loss of information—allows one to recast the system as
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A first, trivial solution to this system is e�⇢ = 0, e�~v =~0, i.e. the absence of any perturbation. In
order for non-trivial solutions to exist, the determinant (!2

� c2s~k
2)⇢0 of the system should vanish.
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This leads at once to the dispersion relation

! = ±cs|~k|. (V.8)

Denoting by ~e~k the unit vector in the direction of ~k, the perturbations �⇢(t,~r) and �~v(t,~r) defined
by Eq. (V.6), as well as �P (t,~r) = c2s �⇢(t,~r), are all functions of cst±~r ·~e~k. These are thus traveling
waves,(li), that propagate with the phase velocity !(~k)/|~k| = cs, which is independent of ~k. That
is, cs is the speed of sound , and the latter is the same for all frequencies.
For instance, for air at T = 300 K, the speed of sound is cs = 347 m · s�1.

Air is a diatomic ideal gas, i.e. it has pressure P = NkBT/V and internal energy U = 5
2NkBT ,
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The thermodynamic relation dU = T dS � P dV + µ dN yields at constant entropy and particle
number
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, with mair = 29/NA g ·mol�1. ⇤

Remarks:
⇤ Instead of c2s, one may use the fluid isentropic compressibility , defined as
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to relate the variations of pressure and mass density �P , �⇢. This compressibility is related to cs
(evaluated at ⇢ = ⇢0) by

�S =
1

⇢0c2s
resp. cs =
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, (V.9b)

which shows that the sound velocity is larger in “stiffer” fluids, i.e. fluids with a smaller compress-
ibility — as generally liquids with respect to gases.

⇤ Taking the real parts of the complex quantities in the harmonic waves (V.6), so as to obtain
real-valued �⇢, �P and �~v, one sees that these will be alternatively positive and negative, and in
average—over a duration much longer than a period 2⇡/!—zero. This in particular means that
the successive compression and condensation (�P > 0, �⇢ > 0) or depression and rarefaction(lii)

(�P < 0, �⇢ < 0) processes do not lead to a resulting transport of matter.

⇤ A single harmonic wave (V.6) is a traveling wave. Yet if the governing equation or systems of
equations is linear or has been linearized, as was done here, the superposition of harmonic waves
is a valid solution. In particular, the superposition of two harmonic traveling waves with equal
frequencies !, opposite wave vectors ~k—which is allowed by the dispersion relation (V.8)—and equal
amplitudes leads to a standing wave, in which the dependence on time and space is proportional to
ei!t cos(~k ·~r).

Coming back to Eq. (V.7b), the proportionality of e�~v(!,~k) and ~k means that the sound waves
in a fluid are longitudinal—in contrast to electromagnetic waves in vacuum, which are transversal
waves.

The nonexistence of transversal waves in fluids reflects the absence of forces that would act
against shear deformations so as to restore some equilibrium shape—shear viscous effects cannot
play that role.

(li)fortschreitende Wellen (lii)Verdünnung
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In contrast, there can be transversal sound waves in elastic solids, as e.g. the so-called S-modes
(shear modes) in geophysics.

The inner product of Eq. (V.7b) with ~k, together with the dispersion relation (V.8) and the
collinearity of e�~v and ~k, leads to the relation
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for the amplitudes of the perturbations. This justifies condition (V.2e), which is then consistent
with (V.2d). Similarly, inserting the ansatz (V.6) in Eq. (V.3b), the terms within curly brackets
become �i! e�~v + i

�
~k · e�~v

� e�~v: again, neglecting the second with respect to the first is equivalent to
requesting

�� e�~v
��⌧ cs.

Remark: Going back to Eqs. (V.4a) and (V.4c), the difference of the time derivative of the first one
and the divergence of the second one leads to the known wave equation(26)

@2�⇢(t,~r)

@t2
� c2s4�⇢(t,~r) = 0, (V.10a)

If the flow—including the background flow on which the sound wave develops, in case ~v0 is not
trivial as it was assumed here—is irrotational, so that one may write ~v(t,~r) = �~r'(t,~r), then the
velocity potential ' also obeys the same equation

@2'(t,~r)

@t2
� c2s4'(t,~r) = 0.

V.1.2 Sound waves in a moving fluid
Doppler effect!

V.1.3 Riemann problem. Rarefaction waves
Should be added at some point

V.1.4 Absorption of sound waves
In chapter ??, we only investigated motions of Newtonian fluids that were incompressible, so

that bulk viscosity could from the start play no role. The simplest example of compressible flow
is that of sound waves. As in § V.1.1, we consider small adiabatic perturbations of a fluid initially
at rest and with uniform properties—which implies that external volume forces like gravity are
neglected. Accordingly, the dynamical fields characterizing the fluid are

⇢(t,~r) = ⇢0 + �⇢(t,~r), P (t,~r) = P 0 + �P (t,~r), ~v(t,~r) =~0 + �~v(t,~r), (V.11a)

with
|�⇢(t,~r)| ⌧ ⇢0, |�P (t,~r)| ⌧ P 0,

���~v(t,~r)
��⌧ cs, (V.11b)

where cs denotes the quantity which in the perfect-fluid case was found to coincide with the phase
velocity of similar small perturbations, i.e. the “speed of sound”, defined by Eq. (V.5)
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As in § V.1.1, this relation will allow us to relate the pressure perturbation �P to the variation of
mass density �⇢.
(26)This traditional denomination is totally out of place in a chapter in which there are several types of waves, each of

which has its own governing “wave equation”. Yet historically, due to its role for electromagnetic or sound waves,
it is the archetypal wave equation, while the equations governing other types of waves often have a specific name.

Nicolas Borghini
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