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called material derivative
(xi) or (between others) substantial derivative,(xii)

derivative following the

motion, hydrodynamic derivative. Relation (I.17) can thus be recast as

~a(t) =
D~v(t,~r)

Dt
. (I.19)

Remarks:

⇤ Equation (I.17) shows that even in the case of a steady motion, the acceleration of a material
point may be non-vanishing, thanks to the convective part.

⇤ The material derivative (I.18) is also often denoted (and referred to) as total derivative d/dt.

⇤ One also finds in the literature the denomination convective derivative.(xiii) To the eyes and ears
of the author of these lines, that name has the drawback that it does not naturally evoke the local
part, but only. . . the convective one, which comes from the fact that matter is being transported,
“conveyed”, with a non-vanishing velocity field~v(t,~r).

⇤ The two terms in Eq. (I.18) actually “merge” together when considering the motion of a material
point in Galilean space-time R⇥R3. As a matter of fact, one easily shows that D/Dt is the (Lie(e))
derivative along the world-line of the material point

The world-line element corresponding to the motion between t and t+dt goes from (t, x1, x2, x3) to

(t+dt, x1+v1 dt, x2+v2 dt, x3+v3 dt). The tangent vector to this world-line thus has components

(1, v1, v2, v3), i.e. the derivative along the direction of this vector is @t + v1@1 + v2@2 + v3@3, with

the usual shorthand notations @t ⌘ @/@t and @i ⌘ @/@xi
. ⇤

I.4 Mechanical stress

I.4.1 Forces in a continuous medium

Consider a closed material domain V inside the volume Vt occupied by a continuous medium,
and let S denote the (geometric) surface enclosing V . One distinguishes between two classes of
forces acting on this domain:

• Volume or body forces,(xiv) which act at each point of the bulk volume of V .
Examples are weight, long-range electromagnetic forces or, in non-inertial reference frames,
fictitious forces (Coriolis, centrifugal).
For such forces, which tend to be proportional to the volume they act on, it will later be more
convenient to introduce the corresponding volumic force density.

• Surface or contact forces,(xv) which act on the surface S, like friction. These will be now
discussed in further detail.

Consider an infinitesimally small geometrical surface element d2S at point P . Let d2 ~Fs denote
the surface force through d2S. That is, d2 ~Fs is the contact force, due to the medium exterior to V ,
that a “test” material surface coinciding with d2S would experience. The vector

~Ts ⌘
d2 ~Fs
d2S , (I.20)

representing the surface density of contact forces, is called (mechanical) stress vector
(xvi) on d2S.

(xi)
Materielle Ableitung

(xii)
Substantielle Ableitung

(xiii)
Konvektive Ableitung

(xiv)
Volumenkräfte

(xv)
Oberflächenkräfte

(e)S. Lie, 1842–1899
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The corresponding unit in the SI system is the Pascal, with 1 Pa = 1 N ·m�2.

Purely geometrically, the stress vector ~Ts on a given surface element d2S at a given point can
be decomposed into two components, namely

• a vector orthogonal to the plane tangent at P to d2S, the so-called normal stress
(xvii); when

it is directed towards the interior resp. exterior of the medium domain being acted on, it also
referred to as compression

(xviii) resp. tension
(xix);

• a vector in the tangent plane in P , called shear stress
(xx) and often denoted as ~⌧ .

Despite the short notation adopted in Eq. (I.20), the stress vector depends not only on the
position of the geometrical point P where the infinitesimal surface element d2S lies, but also on the
orientation of the surface. Let ~en denote the normal unit vector to the surface element, directed
towards the exterior of the volume V (cf. Fig. I.2), and let ~r denote the position vector of P in a
given reference frame. The relation between ~en and the stress vector ~Ts on d2S is then linear:

~Ts = ���(~r) ·~en, (I.21a)

with ���(~r) a symmetric tensor of rank 2, the so-called (Cauchy
(f)) stress tensor .(xxi)

In a given coordinate system, relation (I.21a) yields

T i
s =

3X

j=1

���i
j e

j
n (I.21b)

with T i
s resp. ejn the coordinates of the vectors ~Ts resp. ~en, and ���i

j the
�
1
1

�
-components of the stress

tensor.

While valid in the case of a three-dimensional position space, equation (I.21a) should actually

be better formulated to become valid in arbitrary dimension. Thus, the unit-length “normal

vector” to a surface element at point P is rather a 1-form acting on the vectors of the tangent

space to the surface at P . As such, it should be represented as the transposed of a vector [(~en)T],

which multiplies the stress tensor from the left:

~Ts = (~en)
T ·���(~r). (I.21c)

(xvi)
Mechanischer Spannungsvektor

(xvii)
Normalspannung

(xviii)
Druckspannung

(xix)
Zugsspannung

(xx)
Scher-,

Tangential- oder Schubspannung
(xxi)(Cauchy’scher) Spannungstensor

(f)A.L. Cauchy, 1789–1857
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This shows that the Cauchy stress tensor is a
�
2
0

�
-tensor (a “bivector”), which maps 1-forms onto

vectors. In terms of coordinates, this gives, using Einstein’s summation convention

T j
s = en,i���

ij , (I.21d)

which thanks to the symmetry of ��� is equivalent to the relation given above.

Remark: The symmetry property of the Cauchy stress tensor is intimately linked to the assumption
that the material points constituting the continuous medium have no intrinsic angular momentum.

I.4.2 Fluids

With the help of the notion of mechanical stress, we may now introduce the definition of a fluid ,
which is the class of continuous media whose motion is described by hydrodynamics:

A fluid is a continuous medium that deforms itself as long as it is submitted to shear stresses.

(I.22)
Turning this definition around, one sees that in a fluid at rest—or, to be more accurate, studied

in a reference frame with respect to which it is at rest—the mechanical stresses are necessarily
normal. That is, the stress tensor is in each point diagonal.

More precisely, for a locally isotropic fluid—which means that the material points are isotropic,
which is the case throughout these notes—the stress

�
2
0

�
-tensor is everywhere proportional to the

inverse metric tensor:
���(t,~r) = �P (t,~r)g�1(t,~r) (I.23)

with P (t,~r) the hydrostatic pressure at position ~r at time t.

Going back to relation (I.21b), the stress vector will be parallel to the “unit normal vector” in

any coordinate system if the square matrix of the
�
1
1

�
-components ���i

j is proportional to the

identity matrix, i.e. ���i
j / �ij , where we have introduced the Kronecker symbol. To obtain the�

2
0

�
-components ���ik

, one has to multiply ���i
j by the component gjk of the inverse metric tensor,

summing over k, which precisely gives Eq. (I.23).

Remarks:

⇤ Definition (I.22), as well as the two remarks hereafter, rely on an intuitive picture of “deforma-
tions” in a continuous medium. To support this picture with some mathematical background, we
shall introduce in Sec. ?? an appropriate strain tensor, which quantifies these deformations, at least
as long as they remain small.

⇤ A deformable solid will also deform itself when submitted to shear stress! However, for a given
fixed amount of tangential stress, the solid will after some time reach a new, deformed equilibrium
position—otherwise, it is not a solid, but a fluid.

⇤ The previous remark is actually a simplification, valid on the typical time scale of human beings. Thus,

materials which in our everyday experience are solids—as for instance those forming the mantle of the Earth—

will behave on a longer time scale as fluids—in the previous example, on geological time scales. Whether

a given substance behaves as a fluid or a deformable solid is sometimes characterized by the dimensionless

Deborah number [9], which compares the typical time scale for the response of the substance to a mechanical

stress and the observation time.

⇤ Even nicer, the fluid vs. deformable solid behavior may actually depend on the intensity of the
applied shear stress: ketchup!
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