Tutorial sheet 5

Discussion topic: What is a potential flow? What are the corresponding equations of motion?

14. Hill's spherical vortex

An *incompressible* steady flow in the whole space \mathbb{R}^3 is such that the associated vorticity field reads

$$
\vec{\omega}(r,\theta,\varphi) = \frac{\omega}{a}\vec{e}_{\varphi} \quad \text{for } r \le a \tag{1}
$$

and $\vec{\omega} = 0$ for $r > a$, with $\omega > 0$, $a > 0$. That is, the vorticity is distributed inside a sphere of radius a and vanishing outside. Note that \vec{e}_{φ} denotes the "natural" basis vector associated with φ , i.e. such that

$$
d\vec{r} = \vec{e}_r dr + \vec{e}_\theta d\theta + \vec{e}_\varphi d\varphi.
$$

The goal of this exercise is to determine the corresponding flow velocity $\vec{v}(\vec{r}) = v^r(r, \theta) \vec{e}_r + v^{\theta}(r, \theta) \vec{e}_{\theta}$.

i. The geometry of the problem begs for the use of spherical coordinates (r, θ, φ) , everything being independent of the azimuthal angle φ . Give (determine?) the expressions of the divergence and the curl of the velocity field $\vec{v}(r, \theta)$, and of the gradient and the Laplacian of a scalar function $\Phi(r, \theta)$.

ii. Inside the sphere, $r \leq a$

a) Show that the components of the velocity obey the system of equations

$$
\begin{cases}\n\frac{1}{r^2} \frac{\partial}{\partial r} (r^2 \mathbf{v}^r) + \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} (\mathbf{v}^\theta \sin \theta) = 0 \\
\frac{1}{r^2 \sin \theta} \left(\frac{\partial \mathbf{v}^\theta}{\partial r} - \frac{\partial \mathbf{v}^r}{\partial \theta} \right) = \frac{\omega}{a}.\n\end{cases}
$$
\n(2)

b) To look for a solution of the system [\(2\)](#page-0-0), one makes the ansatz $v^r = f(r) \cos \theta$, $v^{\theta} = g(r) \sin \theta$. Show that the system allows you to express $q(r)$ in terms of $f(r)$, and that the latter obeys the equation

$$
\frac{\mathrm{d}^2}{\mathrm{d}r^2} \left[r^2 f(r) \right] - 2f(r) = -\frac{2\omega r^2}{a}.\tag{3}
$$

c) For which values of $\alpha \in \mathbb{Z}$ do you have solutions of Eq. [\(3\)](#page-0-1) of the form $f(r) = C_{\alpha} r^{\alpha}$ with $C_{\alpha} \in \mathbb{R}$? For one of these values of α , the constant C_{α} is determined by Eq. [\(3\)](#page-0-1).

In turn, the other two integration constants C_{α} have to be determined by physical arguments: $v^r = 0$ at $r = a$ (why?) and another condition at $r = 0$ (which one?). Deduce from these conditions the form of v^r , then of v^{θ} inside the sphere.

Remark: you should find that v^{θ} is nonvanishing at $r = a$.

ii. Outside the sphere

... the flow is irrotational, so that you can introduce a velocity potential $\Phi(r,\theta)$.

a) Show that the latter is of the form

$$
\Phi(r,\theta) = \left(\frac{A'}{r} + \frac{B'}{r^2}\right)\cos\theta
$$

and determine the constants A' , B' by requesting the continuity of the velocity field at the sphere boundary.

b) Determine the velocity field $\vec{v}(r, \theta)$. How does it behaves as $r \to \infty$? What does this means for the vortex, as seen from an observer comoving with the fluid at infinity?

15. Pointlike source

Consider the fluid motion defined in a system of cylindrical coordinates (r, θ, z) by the velocity field given for $r \neq 0$ by

$$
\mathbf{v}^r(t,\vec{r}) = \frac{f(t)}{r}, \quad \mathbf{v}^\theta(t,\vec{r}) = 0, \quad \mathbf{v}^z(t,\vec{r}) = 0,\tag{4}
$$

with f some scalar function.

i. Calculate the strain rate tensor; what are its principal axes? Give the volume expansion rate. Compute the vorticity vector.

Remark You may of course work with Cartesian coordinates; but you should give a try at working directly in cylindrical coordinates, to apply the ideas of the lecture(s) on curvilinear coordinates.

ii. Mathematically, the velocity field is singular at $r = 0$. Thinking of the velocity profile, what do you have *physically* at that point if $f(t) > 0$? if $f(t) < 0$?