Tutorial sheet 4

Discussion topics:

- What is the Bernoulli equation? Give some examples of application.
- What is Kelvin's circulation theorem? What does it imply for the vorticity?

10. Water jet

A horizontal jet of water with cross section area $S = 20$ cm² and velocity $v = 20 \,\mathrm{m \cdot s^{-1}}$ hits an inclined board of length $2\ell = 20$ cm making an angle α with the horizontal direction, and splits into two jets 1 and 2. The resulting flow is assumed to be steady and incompressible, and water is modeled as a perfect fluid.

i. Show that the influence of gravity on the velocities v_1, v_2 is negligible, so that you can forget it when applying the equation appropriate for the flow under study (which you should apply at the water/air boundary).

ii. Knowing that the force \vec{F} exerted by the water on the board is normal to the latter (why?), determine the cross-section areas S_1 , S_2 of the jets as functions of S and the angle α .

iii. Determine the force \vec{F} and compute the numerical value of $|\vec{F}|$ for $\alpha = 30^{\circ}$.

11. Differential form of Thomson's theorem

i. Consider the motion of a perfect barotropic fluid with conservative external volume forces. Show that the vorticity vector field $\vec{\omega}(t, \vec{r})$ obeys the equation

$$
\frac{\partial \vec{\omega}(t,\vec{r})}{\partial t} = \vec{\nabla} \times [\vec{\mathsf{v}}(t,\vec{r}) \times \vec{\omega}(t,\vec{r})].
$$

ii. Stationary vortex: Let $\vec{\omega}(t, \vec{r}) = A \delta(x^1) \delta(x^2) \vec{e}_3$ be the vorticity field in a fluid, with A a real constant and $\{x^i\}$ Cartesian coordinates. Determine the corresponding flow velocity field $\vec{v}(t, \vec{r})$.

Hint: You should invoke symmetry arguments and Stokes' theorem. A useful formal analogy is provided by the Maxwell–Ampère equation of magnetostatics.

12. Model of a tornado

In a simplified approach, one may model a tornado as the steady incompressible flow of a perfect fluid—air—with mass density $\rho = 1.3 \text{ kg} \cdot \text{m}^{-3}$, with a vorticity $\vec{\omega}(\vec{r}) = \omega(\vec{r}) \vec{e}_3$ which remains uniform inside a cylinder—the "eye" of the tornado—with (vertical) axis along \vec{e}_3 and a finite radius $a = 50$ m, and vanishes outside.

i. Express the velocity $v(r) \equiv |\vec{v}(\vec{r})|$ at a distance $r = |\vec{r}|$ from the axis as a function of r and and the velocity $v_a \equiv v(r=a)$ at the edge of the eye.

Compute ω inside the eye, assuming $v_a = 180 \text{ km/h}$.

ii. Show that for $r > a$ the tornado is equivalent to a vortex at $x^1 = x^2 = 0$ (as in exercise 11.ii). What is the circulation around a closed curve circling this equivalent vortex?

iii. Assuming that the pressure P far from the tornado equals the "normal" atmospheric pressure P_0 , determine $P(r)$ for $r > a$. Compute the barometric depression $\Delta P \equiv P_0 - P$ at the edge of the eye. Consider a horizontal roof made of a material with mass surface density 100 kg/m^2 : is it endangered by the tornado?

13. Vortex sheet

Consider a flow for which the vorticity $\vec{\omega} = \vec{\nabla} \times \vec{v}$ is large in a thin layer of thickness δ . If the product $\delta \cdot \vec{\omega}$ remains finite—and converges towards a vector $\vec{\omega}$ in the plane tangent to the layer—when $\delta \to 0$, the surface to which the layer shrinks in that limit is referred to as vortex sheet.

Prove that if some surface S is either a vortex sheet, or a surface at which the tangential component of the velocity is discontinuous, then $\vec{\omega} \times \vec{e}_n = \[\vec{v}_{\parallel}\]$ with \vec{e}_n the (local) unit normal vector to S and $\[\vec{v}_{\parallel}\]$ the (local) jump of the velocity component tangential to S . Consequently, a vortex sheet is a surface of tangential discontinuity of the velocity, and reciprocally.

Vortex sheets arise for example in the flow around the wing of an airplane