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Discussion topic: Dynamical similarity and the Reynolds number. You could also educate yourself
on the topic of Life at low Reynolds number and the “scallop theorem” by reading E. M. Purcell’s article.

30. Dimensionless equations of motion for sea surface waves
This exercise is partly a continuation of the lecture (May 23) on linear sea surface waves, which you should check if you are not sure
of the notations employed.

The equations of motion governing gravity waves at the free surface of an incompressible perfect
liquid (ocean/sea water) in a gravity field −g~ez are

~∇ ·~v(t,~r) = 0, (1a)

∂~v(t,~r)

∂t
+
[
~v(t,~r) · ~∇

]
~v(t,~r) = −1

ρ
~∇P (t,~r)− g~ez, (1b)

with the boundary conditions vz(t, x, z=0) = 0 at the sea bottom;

vz
(
t, x, z=h0+δh(t, x)

)
=
∂δh(t, x)

∂t
+ vx(t,~r)

∂δh(t, x)

∂x
(1c)

at the free surface, situated at z = h0 + δh(t, x); and a uniform pressure at that same free surface,
which may be re-expressed as

P
(
t, x, z=h0+δh(t, x)

)
= ρgδh(t, x) + P 0 (1d)

with P 0 a constant whose precise value is irrelevant. As in the lecture, the problem is assumed to be
two-dimensional.

i. We introduce characteristic scales for various quantities: δhc for the amplitude of the surface
deformation; Lc for lengths along the horizontal direction x; and tc for durations—in practice, the
“good” choice would be tc = Lc/cs with cs the speed of sound, yet this is irrelevant here. With their
help, we define dimensionless variables

t∗ ≡ t

tc
, x∗ ≡ x

Lc
, z∗ ≡ z

Lc
,

and fields:
δh∗ ≡ δh

δhc
, v∗x ≡

vx
δhc/tc

, v∗z ≡
vz

δhc/tc
, P ∗ ≡ P − P 0

ρ δhcLc/t2c
.

Considering the latter as functions of the reduced variables t∗, x∗, z∗, rewrite the equations (1a)–(1d),
making use of the dimensionless numbers

Fr ≡
√
Lc/g

tc
, ε ≡ δhc

Lc
, δ ≡ h0

Lc
.

What does the parameter ε control (mathematically)? and the parameter δ (physically)?

ii. Assuming that the flow is irrotational, show that you can combine some of the dimensionless
equations found in question i. into

∂v∗x
∂t∗

+ ε

(
v∗x
∂v∗x
∂x∗

+ v∗z
∂v∗z
∂x∗

)
+

1

Fr2
∂δh∗

∂x∗
= 0. (2)

The various equations you have obtained in this exercise will be exploited later in the lecture to
derive the Korteweg–de Vries equation, which governs in a specific limit the evolution of the function
φ(t∗, x∗) ≡ δh∗(t∗, x∗)/δ, i.e. the profile of the free water surface.
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31. (1+1)-dimensional relativistic motion
On June 27th, the flow velocities considered in the lectures will reach the relativistic regime. To prepare for this
event, you may refresh your knowledge on Special Relativity. This exercise is here to help you in that direction,
and also introduces coordinates which will be used later in the lectures.

Consider a (1+1)-dimensional relativistic motion along a direction denoted as x, where “1+1” stands
for one time and one spatial dimension. A first possibility is to use Minkowski (x0, x1) = (t, x) coordi-
nates, such that the metric tensor has components g00 ≡ gtt = −1, g11 ≡ gxx = +1, g01 = g10 = 0.1 If
there is a high-velocity motion in the x-direction, a better choice might be to used the proper time (of
a comoving observer) τ and spatial rapidity ς such that

x0
′ ≡ τ ≡

√
t2 − x2, x1

′ ≡ ς ≡ 1

2
log

t+ x

t− x
where |x| ≤ t. (3)

Throughout, we use a system of units in which the speed of light in vacuum c equals 1, as well as
Einstein’s summation convention.

i. Check that the relations defining τ and ς can be inverted, yielding the much simpler

t = τ cosh ς, x = τ sinh ς. (4)

(Hint: Recognize 1
2 log 1+u

1−u).
Deduce the following relationship between the basis vectors of the two coordinate systems{

~eτ (τ, ς) = cosh ς ~et + sinh ς ~ex

~eς(τ, ς) = τ sinh ς ~et + τ cosh ς ~ex
(5)

and write down the metric tensor g0′0′ ≡ gττ , g1′1′ ≡ gςς . . . in the new coordinate system.
For the sake of completeness, give also the components gµ′ν′ of the inverse metric tensor.

ii. Inspiring yourself from what was done in the case of the two-dimensional Euclidean plane in the
lecture, compute the Christoffel symbols Γµ

′

ν′ρ′ where the primed indices run over all values 0′, 1′.

iii. Let Nµ denote the components of a “2-vector”.
Write down the covariant derivative dν′N

µ′ ≡ dNµ′/dxν
′ that generalizes to curvilinear (τ, ς) coordinates

the derivative ∂νNµ ≡ ∂Nµ/∂xν of Minkowski coordinates. Compute the “2-divergence” dµ′N
µ′ .

iv. Let Tµν denote the components of a symmetric
(
2
0

)
-tensor, such that T 01 = 0.

Write down the covariant derivative dρ′T
µ′ν′ and compute dµ′T

µ′ν′ for ν ′ ∈ {τ, ς}.

v. Draw on a spacetime diagram—with t on the vertical axis and x on the horizontal axis—the lines
of constant τ and those of constant ς.

Remark: The coordinates (τ, σ) are sometimes called Milne coordinates.

1Note that I shall use the “mostly plus” convention for the metric tensor, in which timelike vectors have a negative
semi-norm.
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