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Tutorial sheet 7

Discussion topics: What is a sound wave? How do you derive the corresponding equation of motion?
How is the speed of sound defined? What happens when the amplitude of the wave becomes large?

20. One-dimensional “similarity flow”
Consider a perfect fluid at rest in the region x ≥ 0 with pressure P 0 and mass density ρ0; the region

x < 0 is empty (P = 0, ρ = 0). At time t = 0, the wall separating both regions is removed, so that the
fluid starts flowing into the region x < 0. The goal of this exercise is to solve this instance of Riemann’s
problem by determining the flow velocity v(t, x) for t > 0. It will be assumed that the pressure and
mass density of the fluid remain related by

P
P 0

=

(
ρ

ρ0

)γ
, with γ > 1

throughout the motion. This relation also gives you the speed of sound cs(ρ).

i. Assume that the dependence on t and x of the various fields involves only the combination u ≡ x/t.1
Show that the continuity and Euler equations can be recast as[

u− v(u)
]
ρ′(u) = ρ(u) v′(u)

ρ(u)
[
u− v(u)

]
v′(u) = c2s(ρ(u)) ρ′(u),

where ρ′ resp. v′ denote the derivative of ρ resp. v with respect to u.

ii. Show that the velocity is either constant, or obeys the equation u− v(u) = cs(ρ(u)), in which case
the squared speed of sound takes the form c2s(ρ) = c2s(ρ0)(ρ/ρ0)

γ−1.

iii. Show that the results of i. and ii. lead to the relation

v(u) = a+
2

γ − 1
cs(ρ(u)),

where a denotes a constant whose value is fixed by the condition that v(u) remain continuous inside
the fluid. Show eventually that in some interval for the values of u, the norm of v is given by

|v(u)| = 2

γ + 1

[
cs(ρ0)− u

]
.

iv. Sketch the profiles of the mass density ρ(u) and the streamlines x(t) and show that after the
removal of the separation at x = 0 the information propagates with velocity 2cs(ρ0)/(γ − 1) towards
the negative-x region, while it moves to the right with the speed of sound cs(ρ).

21. Inviscid Burgers equation
The purpose of this exercise is to show how an innocent-looking—yet non-linear—partial differential equation
with a smooth initial condition may lead after finite amount of time to a discontinuity, i.e. a shock wave.

Neglecting the pressure term in the one-dimensional Euler equation leads to the so-called inviscid
Burgers equation

∂v(t, x)

∂t
+ v(t, x)

∂v(t, x)

∂x
= 0.

i. Show that the solution with (arbitrary) given initial condition v(0, x) for x ∈ R obeys the implicit
equation v(0, x) = v

(
t, x+ v(0, x) t

)
.

Hint : http://en.wikipedia.org/wiki/Burgers’_equation
1... which is what is meant by “self-similar”.
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ii. Consider the initial condition v(0, x) = v0 e−(x/x0)
2 with v0 and x0 two real numbers. Show that

the flow velocity becomes discontinuous at time t =
√

e/2x0/v0, namely at x = x0
√

2.

22. (1+1)-dimensional relativistic motion
On May 28th, the flow velocities considered in the lectures will reach the relativistic regime. To prepare for this
event, you may refresh your knowledge on Special Relativity. This exercise is here to help you in that direction,
and also introduces coordinates which will be used later in the lectures.

Consider a (1+1)-dimensional relativistic motion along a direction denoted as x, where “1+1” stands
for one time and one spatial dimension. A first possibility is to use Minkowski (x0, x1) = (t, x) coordi-
nates, such that the metric tensor has components g00 ≡ gtt = −1, g11 ≡ gxx = +1, g01 = g10 = 0.2 If
there is a high-velocity motion in the x-direction, a better choice might be to used the proper time (of
a comoving observer) τ and spatial rapidity ς such that

x0
′ ≡ τ ≡

√
t2 − x2, x1

′ ≡ ς ≡ 1

2
log

t+ x

t− x
where |x| ≤ t.

Throughout, we use a system of units in which the speed of light in vacuum c equals 1, as well as
Einstein’s summation convention.

i. Check that the relations defining τ and ς can be inverted, yielding the much simpler

t = τ cosh ς, x = τ sinh ς.

(Hint: Recognize 1
2 log 1+u

1−u).
Deduce the following relationship between the basis vectors of the two coordinate systems{

~eτ (τ, ς) = cosh ς ~et + sinh ς ~ex

~eς(τ, ς) = τ sinh ς ~et + τ cosh ς ~ex

and write down the metric tensor g0′0′ ≡ gττ , g1′1′ ≡ gςς . . . in the new coordinate system.
For the sake of completeness, give also the components gµ′ν′ of the inverse metric tensor.

ii. Inspiring yourself from what was done in the case of the two-dimensional Euclidean plane in the
lecture, compute the Christoffel symbols Γµ

′

ν′ρ′ where the primed indices run over all values 0′, 1′.

iii. Let Nµ denote the components of a “2-vector”.
Write down the covariant derivative dν′N

µ′ ≡ dNµ′/dxν
′ that generalizes to curvilinear (τ, ς) coordi-

nates the derivative ∂νNµ ≡ ∂Nµ/∂xν of Minkowski coordinates. Compute the “2-divergence” dµ′N
µ′ .

iv. Let Tµν denote the components of a symmetric
(
2
0

)
-tensor, such that T 01 = 0.

Write down the covariant derivative dρ′T
µ′ν′ and compute dµ′T

µ′ν′ for ν ′ ∈ {τ, ς}.

v. Draw on a spacetime diagram—with t on the vertical axis and x on the horizontal axis—the lines
of constant τ and those of constant ς.

Remark: The coordinates (τ, σ) are sometimes called Milne coordinates.

2Note that I shall use the “mostly plus” convention for the metric tensor, in which timelike vectors have a negative
semi-norm.
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