Tutorial sheet 5

Discussion topic: What is Kelvin's circulation theorem? What does it imply for the vorticity?

13. Water sprinkler

The horizontal lawn sprinkler schematized below is fed water through its center with a mass flow rate Q. Assuming that water is a perfect incompressible fluid, determine the steady rotation rate as function of Q, the cross section area s of the pipes, their length ℓ , and the angle θ of the emerging water jets with respect to the respective pipes.

14. Water jet

A horizontal jet of water with cross section area $S = 20 \text{ cm}^2$ and velocity $v = 20 \text{ m} \cdot \text{s}^{-1}$ hits an inclined board of length $2\ell = 20$ cm making an angle α with the horizontal direction, and splits into two jets 1 and 2. The resulting flow is assumed to be steady and incompressible, and water is modeled as a perfect fluid.

i. Show that the influence of gravity on the velocities v_1 , v_2 is negligible, so that you can forget it when applying the equation appropriate for the flow under study (which you should apply at the water/air boundary).

ii. Knowing that the force \vec{F} exerted by the water on the board is normal to the latter (why?), determine the cross-section areas S_1 , S_2 of the jets as functions of S and the angle α .

iii. Determine the force \vec{F} and compute the numerical value of $|\vec{F}|$ for $\alpha = 30^{\circ}$.

15. Model of a tornado

In a simplified approach, one may model a tornado as the steady incompressible flow of a perfect fluid—air—with mass density $\rho = 1.3 \text{ kg} \cdot \text{m}^{-3}$, with a vorticity $\vec{\omega}(\vec{r}) = \omega(\vec{r}) \vec{e}_3$ which remains uniform inside a cylinder—the "eye" of the tornado—with (vertical) axis along \vec{e}_3 and a finite radius a = 50 m, and vanishes outside.

i. Express the velocity $\mathbf{v}(r) \equiv |\vec{\mathbf{v}}(\vec{r})|$ at a distance $r = |\vec{r}|$ from the axis as a function of r and and the velocity $\mathbf{v}_a \equiv \mathbf{v}(r=a)$ at the edge of the eye.

Compute ω inside the eye, assuming $\mathsf{v}_a=180~\mathrm{km/h}.$

ii. Show that for r > a the tornado is equivalent to a vortex at $x^1 = x^2 = 0$ (as in exercise 11.ii). What is the circulation around a closed curve circling this equivalent vortex?

iii. Assuming that the pressure \mathcal{P} far from the tornado equals the "normal" atmospheric pressure \mathcal{P}_0 , determine $\mathcal{P}(r)$ for r > a. Compute the barometric depression $\Delta \mathcal{P} \equiv \mathcal{P}_0 - \mathcal{P}$ at the edge of the eye. Consider a horizontal roof made of a material with mass surface density 100 kg/m²: is it endangered by the tornado?

16. Vortex sheet

Consider a flow for which the vorticity $\vec{\omega} = \vec{\nabla} \times \vec{v}$ is large in a thin layer of thickness δ . If the product $\delta \cdot \vec{\omega}$ remains finite—and converges towards a vector $\vec{\omega}$ in the plane *tangent* to the layer—when $\delta \to 0$, the surface to which the layer shrinks in that limit is referred to as *vortex sheet*.

Prove that if some surface S is either a vortex sheet, or a surface at which the tangential component of the velocity is discontinuous, then $\vec{\varpi} \times \vec{e}_n = [\![\vec{v}_{\parallel}]\!]$ with \vec{e}_n the (local) unit normal vector to S and $[\![\vec{v}_{\parallel}]\!]$ the (local) jump of the velocity component tangential to S. Consequently, a vortex sheet is a surface of tangential discontinuity of the velocity, and reciprocally.

Vortex sheets arise for example in the flow around the wing of an airplane