Tutorial sheet 2

Discussion topics: What are the Lagrangian and Eulerian descriptions? How is a fluid defined?

4. Lagrangian description: Jacobian determinant

Consider the twice continuously differentiable (\mathscr{C}^2) mapping $(t, \vec{R}) \mapsto \vec{r}(t, \vec{R})$ from "initial" position vectors at t_0 to those at time t. Let (X^1, X^2, X^3) resp. (x^1, x^2, x^3) denote the coordinates of \vec{R} resp. \vec{r} in some fixed system.

The Jacobian determinant $J(t, \vec{R})$ of the transformation $\vec{R} \mapsto \vec{r}$ is as usual the determinant of the matrix with elements $\partial x^i/\partial X^j$. Thanks to the hypotheses on the mapping $\vec{r}(t, \vec{R})$, this Jacobian has simple mathematical properties.

i. Can you find a physical interpretation for $J(t, \vec{R})$? [Hint: Think of small volume elements.]

ii. Using the initial value $J(t_0, \vec{R})$ in the reference configuration, as well as the invertibility and \mathscr{C}^2 -character of the mapping $\vec{r}(t, \vec{R})$, show that $J(t, \vec{R})$ is positive for $t \geq t_0$. What does this mean physically?

iii. Consider the motion of a continuous medium defined for $t \geq 0$ by

$$
x^1 = X^1 + ktX^2
$$
, $x^2 = X^2 + ktX^1$, $x^3 = X^3$,

where $k > 0$. One may for simplicity assume that the coordinates are Cartesian.

- a) Over which time range is this motion defined? [Hint: Jacobian determinant!]
- b) What are its pathlines?
- c) Determine the Eulerian description of this motion, i.e. the velocity field $\vec{v}(t, \vec{r})$.

5. Stress tensor

Let \mathbf{T}_{ij} denote the Cartesian^{[1](#page-0-0)} components of the stress tensor in a continuous medium. Consider an infinitesimal cube of medium of side $d\ell$, whose sides are parallel to the axes of the coordinate system.

i. Explain why the k-component \mathcal{M}_k of the torque exerted on the cube by the neighboring regions of the continuous medium obeys $\mathcal{M}_k \propto -\epsilon_{ijk} \mathbf{T}_{ij} (\mathrm{d}\ell)^3$, with ϵ_{ijk} the usual Levi-Civita symbol.

ii. Using dimensional considerations, write down the dependence of the moment of inertia I of the cube on d ℓ and on the continuum mass density ρ .

iii. Using the results of the previous two questions, how does the rate of change of the angular velocity ω_k scale with d ℓ ? How can you prevent this rate of change from diverging in the limit d $\ell \to 0$?

6. Isotropy of pressure

Consider a geometrical point at position \vec{r} in a fluid at rest. The stress vector across every surface element going through this point is normal: $\dot{T}(\vec{r}) = -\mathcal{P}(\vec{r})\vec{e}_n$, with \vec{e}_n the unit vector orthogonal to the surface element under consideration. Show that the (hydrostatic) pressure *P* is independent of the orientation of \vec{e}_n .

Hint: Consider the forces on the faces of an infinitesimal trirectangular tetrahedron.

 $1...$ which allows us to be sloppy with the position of indices.