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Tutorial sheet 12

Discussion topic: Life at low Reynolds number (educate yourself by reading E. M. Purcell’s article)
and the “scallop theorem”.

35. Equations of fluid dynamics in a uniformly rotating reference frame
This exercise is inspired by Chapter 14.5.1 of the lecture notes on Applications of Classical Physics by Roger D. Blandford and Kip
S. Thorne.

For the study of various physical problems (see examples in question iv.a), it may be more convenient
to study the dynamics of a fluid from a reference frame RΩ0 in uniform rotation with angular velocity
~Ω0 with respect to an inertial frame R0.
In exercise 17, you already investigated hydrostatics in a rotating reference frame: in that case only
the centrifugal acceleration plays a role, which can be entirely recast as the effect of a potential energy
Φcen.(~r) ≡ −1

2

(
~Ω0×~r

)2 leading to the centrifugal inertial force density ~fcen. = −ρ~∇Φcen.. The purpose
of this exercise is to generalize that result to the derivation of (some of) the equations governing a
flowing Newtonian fluid.

i. Kinematics
Recall the expressions of the centrifugal and Coriolis accelerations acting on a small fluid element

in terms of its position vector ~r and velocity ~v (measured in RΩ0) and of the angular velocity.

ii. Incompressibility condition
Writing down the relation between the velocity ~v with respect to RΩ0 and that measured in R0,

show that the incompressibility condition valid in the inertial frame leads to ~∇·~v = 0.

iii. Navier–Stokes equation
Show that the incompressible Navier–Stokes equation from the point of view of an observer at rest

in the rotating reference frame RΩ0 reads (the variables are omitted)

D~v

Dt
= −1

ρ
~∇P eff. + ν4~v − 2~Ω0×~v (1)

where P eff. = P + ρ
(
Φ + Φcen.

)
, with Φ the potential energy from which (non-inertial) volume forces

acting on the fluid derive. Check that you recover the equation of hydrostatics found in exercise 17.

iv. Dimensionless numbers and limiting cases
a) Let Lc resp. vc denote a characteristic length resp. velocity for a given flow. The Ekman and Rossby
numbers are respectively defined as

Ek ≡ ν

|Ω0|L2
c

, Ro ≡ vc
|Ω0|Lc

.

Compute Ek and Ro in a few numerical examples:
– Lc ≈ 100 km, vc ≈ 10 m · s−1, Ω0 ≈ 10−4 rad · s−1, ν ≈ 10−5 m2 · s−1 (wind in the Earth atmosphere);
– Lc ≈ 1000 km, vc ≈ 0.1 m · s−1, Ω0 ≈ 10−4 rad · s−1, ν ≈ 10−6 m2 · s−1 (ocean stream);
– Lc ≈ 10 cm, vc ≈ 1 m · s−1, Ω0 ≈ 10 rad · s−1, ν ≈ 10−6 m2 · s−1 (coffee/tea in your cup).
b) Assuming stationarity, which term in Eq. (1) is negligible (against which) at small Ekman number?
at small Rossby number?

Write down the simplified equation of motion valid when both Ek � 1 and Ro � 1 (to which of
the above examples does this correspond?). How do the (effective) pressure gradient ~∇P eff. and flow
velocity stand relative to each other?

1

http://dx.doi.org/10.1119/1.10903


Summer term 2015 Hydrodynamics Universität Bielefeld

36. Dimensionless equations of motion for sea surface waves
This exercise is partly a continuation of the May 26 lecture on linear sea surface waves, which you should check if you are not sure
of the notations employed.

The equations of motion governing gravity waves at the free surface of an incompressible perfect
liquid (ocean/sea water) in a gravity field −gz~ez are

~∇ ·~v(t,~r) = 0, (2a)

∂~v(t,~r)

∂t
+
[
~v(t,~r) · ~∇

]
~v(t,~r) = −1

ρ
~∇P (t,~r)− g~ez, (2b)

with the boundary conditions vz(t, x, z=0) = 0 at the sea bottom;

vz
(
t, x, z=h0+δh(t, x)

)
=
∂δh(t, x)

∂t
+ vx(t,~r)

∂δh(t, x)

∂x
(2c)

at the free surface, situated at z = h0 + δh(t, x); and a uniform pressure at that same free surface,
which may be re-expressed as

P
(
t, x, z=h0+δh(t, x)

)
= ρgδh(t, x) + P 0 (2d)

with P 0 a constant whose precise value is irrelevant. As in the lecture (May 26), the problem is assumed
to be two-dimensional.

i. We introduce characteristic scales for various quantities: δhc for the amplitude of the surface
deformation; Lc for lengths along the horizontal direction x; and tc for durations—in practice, the
“good” choice would be tc = Lc/cs with cs the speed of sound, yet this is irrelevant here. With their
help, we define dimensionless variables

t∗ ≡ t

tc
, x∗ ≡ x

Lc
, z∗ ≡ z

Lc
,

and fields:
δh∗ ≡ δh

δhc
, v∗x ≡

vx
δhc/tc

, v∗z ≡
vz

δhc/tc
, P ∗ ≡ P − P 0

ρ δhcLc/t2c
.

Considering the latter as functions of the reduced variables t∗, x∗, z∗, rewrite the equations (2a)–(2d),
making use of the dimensionless numbers

Fr ≡
√
Lc/g

tc
, ε ≡ δhc

Lc
, δ ≡ h0

Lc
.

What does the parameter ε control (mathematically)? and the parameter δ (physically)?

ii. Assuming that the flow is irrotational, show that you can combine some of the dimensionless
equations found in question i. into

∂v∗x
∂t∗

+ ε

(
v∗x
∂v∗x
∂x∗

+ v∗z
∂v∗z
∂x∗

)
+

1

Fr2

∂δh∗

∂x∗
= 0.

The various equations you have obtained in this exercise will be exploited later in the lecture, to
derive the Korteweg–de Vries equation, which governs in a specific limit the evolution of the function
φ(t∗, x∗) ≡ δh∗(t∗, x∗)/δ, i.e. the profile of the free water surface.
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