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Tutorial sheet 10

Discussion topic: What are the fundamental equations governing the dynamics of non-relativistic
Newtonian fluids?

29. One-dimensional relativistic flow
In the lecture on the 9th of June, the equations describing the “boost-invariant” one-dimensional expan-
sion of a perfect relativistic fluid were presented. Here, we investigate another one-dimensional solution
of the equations of relativistic fluid dynamics, originally due to L. Landau [Izv. Akad. Nauk. USSR 17
(1953) 51], again for a medium without conserved quantum number.

Throughout the exercise, we set c = 1 and drop the x variable for the sake of brevity. Remember
that the metric tensor has signature (−,+,+,+).

i. Considering a one-dimensional expansion along the z-axis, write down the non-trivial equations of
motion expressing energy-momentum conservation in Minkowski coordinates.
From now on, the equation of state of the expanding perfect fluid is assumed to be ε = 3P .

ii. The so-called light-cone coordinates are defined as x+ ≡ t+ z√
2
, x− ≡ t− z√

2
, where the factor 1/

√
2

is not universal, yet convenient.
a) Although this is irrelevant for the rest of the exercise, write down the metric tensor in light-cone
coordinates. Of which type are the basis vectors in the x+ and x− directions?

b) Check the identities
∂
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∂
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)
and

∂
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)
.

c) Show that they allow you to transform the equations of motion of question i. into
∂ε

∂x+
+ 2

∂(εe−2y
f )

∂x−
= 0 , 2

∂(εe2y
f )

∂x+
+

∂ε

∂x−
= 0, (1)

with y
f
(x) the position-dependent “flow rapidity”, such that ut = cosh y

f
, uz = sinh y

f
.

iii. Let y± ≡ log
x±

∆
, with ∆ some length scale.

a) Show that the expansion with energy density and flow rapidity
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is solution to the equations of motion (1), with ε0 a constant.
Hint : The identity e2y

f
(y+,y−) = x+/x− may be helpful.

b) Transforming the previous solution (2) back to Minkowski variables, sketch the energy density (in
units of ε0) and the flow rapidity as a function of z at successive instants t = ∆, 2∆, 4∆, 8∆ for |z| < t.
Can you guess what physical problem Landau was trying to model?

30. Heat diffusion
In the lecture (June 11), we derived the equation

∂e(t, ~r)

∂t
= ~∇ ·

[
κ(t, ~r)~∇T (t, ~r)

]
valid in a dissipative fluid at rest, with κ the heat capacity.
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Assuming that C ≡ ∂e/∂T and κ are constant coefficients and introducing χ ≡ κ/C, determine
the temperature profile T (t, ~r) for z < 0 with the boundary condition of a uniform temperature in the
plane z = 0, which evolves in time as T (t, z=0) = T0 cos(ωt). At which depth is the amplitude of the
temperature oscillations 10% of that in the plane z = 0?

31. Taylor–Couette flow. Measurement of shear viscosity
A Couette viscometer consists of an annular gap, filled with fluid, between two concentric cylinders

with height L. The outer cylinder (radius R2) rotates around the common axis with angular velocity
Ω2, while the inner cylinder (radius R1) remains motionless. The motion of the fluid is assumed to be
two-dimensional, incompressible and steady.

i. Check that the continuity equation leads to vr = 0, with vr the radial component (in a system of
cylinder coordinates) of the flow velocity.

ii. Prove that the Navier–Stokes equation lead to the equations

vϕ(r)2

r
=

1

ρ

∂P (r)

∂r
(3)

∂2vϕ(r)

∂r2
+

1

r

∂vϕ(r)

∂r
− vϕ(r)

r2
= 0. (4)

What is the meaning of Eq. (3)? Solve Eq. (4) with the ansatz vϕ(r) = ar +
b

r
.

iii. One can show (can you?) that the rϕ-component of the stress tensor is given by

σrϕ = η

(
1

r

∂vr

∂ϕ
+
∂vϕ

∂r
− vϕ

r

)
.

Show that σrϕ = −2bη

r2
, where b is the same coefficient as above.

iv. A torque Mz is measured at the surface of the inner cylinder. How can the shear viscosity η of
the fluid be deduced from this measurement?
Numerical example: R1 = 10 cm, R2 = 11 cm, L = 10 cm, Ω2 = 10 rad·s−1 andMz = 7, 246·10−3 N·m.
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