Tutorial sheet 1

Discussion topic: Which idealizations underlie the description of a macroscopic many-body system as a continuous medium? How is local thermodynamic equilibrium defined?

1. Wave equation

Consider a scalar field $\phi(t, x)$ which obeys the partial differential equation

$$
\left(\frac{1}{c^2}\frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial x^2}\right)\phi(t, x) = 0\tag{1}
$$

with initial conditions $\phi(0, x) = e^{-x^2}$, $\partial_t \phi(0, x) = 0$. Determine the solution $\phi(t, x)$ for $t > 0$.

2. Stationary flow: first example

(This exercise and the following one make use of concepts which will only be seen in the lecture on April 14 or 16; this should pose you no difficulty.)

Consider the stationary flow defined in the region $x^1 > 0$, $x^2 > 0$ by its velocity field

$$
\vec{\mathbf{v}}(t, \vec{r}) = k(-x^1 \vec{\mathbf{e}}_1 + x^2 \vec{\mathbf{e}}_2)
$$
\n
$$
(2)
$$

with k a positive constant, $\{\vec{e}_i\}$ the basis vectors of a coordinate system and $\{x^i\}$ the coordinates of the position vector \vec{r} .

Determine the *stream lines* at some arbitrary time t. The latter are by definition lines $\vec{\xi}(\lambda)$ whose tangent is everywhere parallel to the instantaneous velocity field, with λ a parameter along the stream line. That is, they obey the condition

$$
\frac{\mathrm{d}\vec{\xi}(\lambda)}{\mathrm{d}\lambda} = \alpha(\lambda)\vec{\mathsf{v}}(t,\vec{\xi}(\lambda))
$$

with $\alpha(\lambda)$ a scalar function, or equivalently

$$
\frac{\mathrm{d}\xi^1(\lambda)}{\mathrm{v}^1(t,\vec{\xi}(\lambda))} = \frac{\mathrm{d}\xi^2(\lambda)}{\mathrm{v}^2(t,\vec{\xi}(\lambda))} = \frac{\mathrm{d}\xi^3(\lambda)}{\mathrm{v}^3(t,\vec{\xi}(\lambda))},
$$

with $d\xi^{i}(\lambda)$ the coordinates of the (infinitesimal) tangent vector to the stream line.

3. Stationary flow: second example

Consider the fluid flow whose velocity field $\vec{v}(t, \vec{r})$ has coordinates (in a given Cartesian system)

$$
\mathsf{v}^{1}(t,\vec{r}) = kx^{2}, \quad \mathsf{v}^{2}(t,\vec{r}) = kx^{1}, \quad \mathsf{v}^{3}(t,\vec{r}) = 0,
$$
\n(3)

where k is a positive real number, while x^1, x^2, x^3 are the coordinates of the position vector \vec{r} .

i. Determine the stream lines (see definition in exercise 2.) at an arbitrary instant t .

ii. Let X^1, X^2, X^3 denote the coordinates of some arbitrary point M and let t_0 be the real number defined by

$$
kt_0 = \begin{cases} -\text{Artanh}(X^2/X^1) & \text{if } |X^1| > |X^2| \\ 0 & \text{if } X^1 = \pm X^2 \\ -\text{Artanh}(X^1/X^2) & \text{if } |X^1| < |X^2|. \end{cases}
$$

Write down a parameterization $x^1(t)$, $x^2(t)$, $x^3(t)$, in terms of a parameter denoted by t, of the coordinates of the stream line $\vec{x}(t)$ going through M such that $d\vec{x}(t)/dt$ at any point equals the velocity field at that point, and that either $x^1(t) = 0$ or $x^2(t) = 0$ for $t = t_0$.

iii. Viewing $\vec{x}(t)$ as the trajectory of a point—actually, of a fluid particle—, you already know the velocity of that point at time t (do you?). What is its acceleration $\vec{a}(t)$?

iv. Coming back to the velocity field [\(3\)](#page-0-0), compute first its partial derivative $\frac{\partial \vec{v}(t, \vec{r})}{\partial t}$, then the material derivative

$$
\frac{\nabla \vec{\mathsf{v}}(t,\vec{r})}{\nabla t} \equiv \frac{\partial \vec{\mathsf{v}}(t,\vec{r})}{\partial t} + [\vec{\mathsf{v}}(t,\vec{r}) \cdot \vec{\nabla}] \vec{\mathsf{v}}(t,\vec{r}),
$$

where $\vec{\mathsf{v}}(t, \vec{r}) \cdot \vec{\nabla}$ denotes the differential operator $\mathsf{v}^1(t, \vec{r}) \partial_1 + \mathsf{v}^2(t, \vec{r}) \partial_2 + \mathsf{v}^3(t, \vec{r}) \partial_3$, with $\partial_i \equiv \partial_{x^i}$. Compare $\frac{\partial \vec{v}(t, \vec{r})}{\partial t}$ and $D\vec{v}(t, \vec{r})/Dt$ with the acceleration of a fluid particle found in question iii.

Hint: You should review this exercise after the lectures on *Lagrangian* and *Eulerian descriptions*, even if you have had no problem in solving it earlier.