
Summer term 2015 Hydrodynamics Universität Bielefeld

Tutorial sheet 1

Discussion topic: Which idealizations underlie the description of a macroscopic many-body system
as a continuous medium? How is local thermodynamic equilibrium defined?

1. Wave equation
Consider a scalar field φ(t, x) which obeys the partial differential equation(

1

c2
∂2

∂t2
− ∂2

∂x2

)
φ(t, x) = 0 (1)

with initial conditions φ(0, x) = e−x2 , ∂tφ(0, x) = 0. Determine the solution φ(t, x) for t > 0.

2. Stationary flow: first example
(This exercise and the following one make use of concepts which will only be seen in the lecture on April 14 or
16; this should pose you no difficulty.)

Consider the stationary flow defined in the region x1 > 0, x2 > 0 by its velocity field

~v(t, ~r) = k(−x1~e1 + x2~e2) (2)

with k a positive constant, {~ei} the basis vectors of a coordinate system and {xi} the coordinates of
the position vector ~r.

Determine the stream lines at some arbitrary time t. The latter are by definition lines ~ξ(λ) whose
tangent is everywhere parallel to the instantaneous velocity field, with λ a parameter along the stream
line. That is, they obey the condition

d~ξ(λ)

dλ
= α(λ)~v(t,~ξ(λ))

with α(λ) a scalar function, or equivalently
dξ1(λ)

v1(t,~ξ(λ))
=

dξ2(λ)

v2(t,~ξ(λ))
=

dξ3(λ)

v3(t,~ξ(λ))
,

with dξi(λ) the coordinates of the (infinitesimal) tangent vector to the stream line.

3. Stationary flow: second example
Consider the fluid flow whose velocity field ~v(t, ~r) has coordinates (in a given Cartesian system)

v1(t, ~r) = kx2, v2(t, ~r) = kx1, v3(t, ~r) = 0, (3)

where k is a positive real number, while x1, x2, x3 are the coordinates of the position vector ~r.

i. Determine the stream lines (see definition in exercise 2.) at an arbitrary instant t.

ii. Let X1, X2, X3 denote the coordinates of some arbitrary point M and let t0 be the real number
defined by

kt0 =


−Artanh(X2/X1) if |X1| > |X2|
0 if X1 = ±X2

−Artanh(X1/X2) if |X1| < |X2|.
Write down a parameterization x1(t), x2(t), x3(t), in terms of a parameter denoted by t, of the coordi-
nates of the stream line ~x(t) going through M such that d~x(t)/dt at any point equals the velocity field
at that point, and that either x1(t) = 0 or x2(t) = 0 for t = t0.

iii. Viewing ~x(t) as the trajectory of a point—actually, of a fluid particle—, you already know the
velocity of that point at time t (do you?). What is its acceleration ~a(t)?
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iv. Coming back to the velocity field (3), compute first its partial derivative ∂~v(t, ~r)/∂t, then the
material derivative

D~v(t, ~r)

Dt
≡ ∂~v(t, ~r)

∂t
+
[
~v(t, ~r) · ~∇

]
~v(t, ~r),

where ~v(t, ~r) · ~∇ denotes the differential operator v1(t, ~r)∂1 + v2(t, ~r)∂2 + v3(t, ~r)∂3, with ∂i ≡ ∂xi .
Compare ∂~v(t, ~r)/∂t and D~v(t, ~r)/Dt with the acceleration of a fluid particle found in question iii.

Hint : You should review this exercise after the lectures on Lagrangian and Eulerian descriptions, even
if you have had no problem in solving it earlier.
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Tutorial sheet 2

Discussion topics: What are the Lagrangian and Eulerian descriptions? How is a fluid defined?

4. Lagrangian description: Jacobian determinant
Consider the twice continuously differentiable (C 2) mapping (t, ~R) 7→ ~r(t, ~R) from “initial” position

vectors at t0 to those at time t. Let (X1, X2, X3) resp. (x1, x2, x3) denote the coordinates of ~R resp. ~r
in some fixed system.

The Jacobian determinant J(t, ~R) of the transformation ~R 7→ ~r is as usual the determinant of the
matrix with elements ∂xi/∂Xj . Thanks to the hypotheses on the mapping ~r(t, ~R), this Jacobian has
simple mathematical properties.

i. Can you find a physical interpretation for J(t, ~R)? [Hint : Think of small volume elements.]

ii. Using the initial value J(t0, ~R) in the reference configuration, as well as the invertibility and
C 2-character of the mapping ~r(t, ~R), show that J(t, ~R) is positive for t ≥ t0. What does this mean
physically?

iii. Consider the motion of a continuous medium defined for t ≥ 0 by

x1 = X1 + ktX2, x2 = X2 + ktX1, x3 = X3,

where k > 0. One may for simplicity assume that the coordinates are Cartesian.
a) Over which time range is this motion defined? [Hint : Jacobian determinant!]
b) What are its pathlines?
c) Determine the Eulerian description of this motion, i.e. the velocity field ~v(t, ~r).

5. Stress tensor
Let TTTij denote the Cartesian1 components of the stress tensor in a continuous medium. Consider an

infinitesimal cube of medium of side d`, whose sides are parallel to the axes of the coordinate system.

i. Explain why the k-componentMk of the torque exerted on the cube by the neighboring regions of
the continuous medium obeysMk ∝ −εijkTTTij(d`)

3, with εijk the usual Levi-Civita symbol.

ii. Using dimensional considerations, write down the dependence of the moment of inertia I of the
cube on d` and on the continuum mass density ρ.

iii. Using the results of the previous two questions, how does the rate of change of the angular velocity
ωk scale with d`? How can you prevent this rate of change from diverging in the limit d`→ 0?

6. Isotropy of pressure
Consider a geometrical point at position ~r in a fluid at rest. The stress vector across every surface

element going through this point is normal: ~T (~r) = −P (~r)~en, with ~en the unit vector orthogonal to
the surface element under consideration. Show that the (hydrostatic) pressure P is independent of the
orientation of ~en.
Hint : Consider the forces on the faces of an infinitesimal trirectangular tetrahedron.

1... which allows us to be sloppy with the position of indices.
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Tutorial sheet 3

Discussion topics:
- What are the strain rate tensor, the rotation rate tensor, and the vorticity vector? How do they

come about and what do they measure?
- What is the Reynolds transport theorem (and its utility)?
(- Give the basic equations governing the dynamics of perfect fluids.)

7. Example of a motion
Consider the motion defined in a system of Cartesian coordinates with basis vectors (~e1,~e2,~e3) by

the velocity field with components

v1(t, ~r) = f1(t, x
2), v2(t, ~r) = f2(t, x

1), v3(t, ~r) = 0,

with f1, f2 two continuously differentiable functions.

i. Compute the strain rate tensor DDD(t, ~r) for this motion. What are its principal axes and the
corresponding eigenvalues?1 What is the volume expansion rate?

ii. Give the rotation rate tensor RRR(t, ~r) and the vorticity vector. Under which condition(s) on the
functions f1, f2 does the motion become irrotational?

8. Pointlike source
Consider the fluid motion defined in a system of cylindrical coordinates (r, θ, z) by the velocity field

given for r 6= 0 by

vr(t, ~r) =
f(t)

r
, vθ(t, ~r) = 0, vz(t, ~r) = 0,

with f some scalar function.

i. Calculate the strain rate tensor; what are its principal axes? Give the volume expansion rate.
Compute the vorticity vector.

ii. Mathematically, the velocity field is singular at r = 0. Thinking of the velocity profile, what do
you have physically at that point if f(t) > 0? if f(t) < 0?

9. Pointlike vortex
Consider now the motion defined in a system of cylindrical coordinates by the velocity field given

for r 6= 0 by

~v(t, r, θ, z) =
Γ

2πr
~eθ, Γ ∈ R.

Give the strain rate tensor, with its principal axes and eigenvalues, the volume expansion rate, the
rotation rate tensor and the vorticity vector. Compute the circulation of the velocity field along a closed
curve circling the z-axis.

1Need a reminder on these notions? Check your favorite lecture on the mechanics of rigid bodies, especially the
chapter on the tensor of inertia: e.g. http://www.physik.uni-bielefeld.de/~yorks/theo1/ (Nov.11 & 12 lectures) or
http://www.physik.uni-bielefeld.de/~laine/klassisch/ (Nov.12 lecture).
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Tutorial sheet 4

Discussion topics:
- Give the basic equations governing the dynamics of perfect fluids.
- What is the Bernoulli equation? Give some examples of application.

10. Rotating fluid in a uniform gravitational potential
Consider an ideal fluid contained in a straight cylindrical vessel which rotates with constant angular

velocity ~Ω = Ω~e3 about its vertical axis, the whole system being placed in a uniform gravitational
field −g~e3. Assuming that the fluid rotates with the same angular velocity and that its motion is
incompressible, determine the shape of the free surface of the fluid.
Hint : Landau & Lifshitz, Fluid dynamics § 10.

11. Differential form of Thomson’s theorem
This appellation will become clearer after the lectures in the first week of May. The content of these lectures is not needed to solve
the exercise.

i. Consider the motion of an ideal fluid in a gravitation potential. Show that the vorticity vector field
~ω(t, ~r) obeys the equation

∂~ω(t, ~r)

∂t
= ~∇×

[
~v(t, ~r)× ~ω(t, ~r)

]
.

Hint : Use the conservation of the entropy per particle to transform the pressure term in the Euler
equation.

ii. Stationary vortex: Let ~ω(t, ~r) = Aδ(x1) δ(x2)~e3 be the vorticity field in a fluid, with A a real
constant and {xi} Cartesian coordinates. Determine the corresponding flow velocity field ~v(t, ~r).
Hint : You should invoke symmetry arguments and Stokes’ theorem. A useful formal analogy is provided
by the Maxwell–Ampère equation of magnetostatics.

12. Simplified model of star
In an oversimplified approach, one may model a star as a sphere of fluid—a plasma—with uniform

mass density ρ. This fluid is in mechanical equilibrium under the influence of pressure P and gravity.
Throughout this exercise, the rotation of the star is neglected.

i. Determine the gravitational field at a distance r from the center of the star.

ii. Assuming that the pressure only depend on r, write down the equation expressing the mechanical
equilibrium of the fluid. Determine the resulting function P (r). Compute the pressure at the star center
as function of the mass M and radius R of the star. Calculate the numerical value of this pressure for
M = 2× 1030 kg (solar mass) and R = 7× 108 m (solar radius).

iii. The matter constituting the star is assumed to be an electrically neutral mixture of hydrogen
nuclei and electrons. Show that the order of magnitude of the total particle number density of that
plasma is n ≈ 2ρ/mp, with mp the proton mass. Estimate the temperature at the center of the sun.
Hint : mp = 1.6× 10−27 kg; kB = 1.38× 10−23 J·K−1.
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Tutorial sheet 5

Discussion topic: What is Kelvin’s circulation theorem? What does it imply for the vorticity?

13. Water sprinkler
The horizontal lawn sprinkler schematized below is fed water through its center with a mass flow

rate Q. Assuming that water is a perfect incompressible fluid, determine the steady rotation rate as
function of Q, the cross section area s of the pipes, their length `, and the angle θ of the emerging water
jets with respect to the respective pipes.
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14. Water jet
A horizontal jet of water with cross section area S = 20 cm2 and velocity v = 20m · s−1 hits an

inclined board of length 2` = 20 cm making an angle α with the horizontal direction, and splits into
two jets 1 and 2. The resulting flow is assumed to be steady and incompressible, and water is modeled
as a perfect fluid.
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i. Show that the influence of gravity on the velocities v1, v2 is negligible, so that you can forget it when
applying the equation appropriate for the flow under study (which you should apply at the water/air
boundary).

ii. Knowing that the force ~F exerted by the water on the board is normal to the latter (why?),
determine the cross-section areas S1, S2 of the jets as functions of S and the angle α.

iii. Determine the force ~F and compute the numerical value of |~F | for α = 30o.

15. Model of a tornado
In a simplified approach, one may model a tornado as the steady incompressible flow of a perfect

fluid—air—with mass density ρ = 1.3 kg ·m−3, with a vorticity ~ω(~r) = ω(~r)~e3 which remains uniform
inside a cylinder—the “eye” of the tornado—with (vertical) axis along ~e3 and a finite radius a = 50 m,
and vanishes outside.
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i. Express the velocity v(r) ≡
∣∣~v(~r)

∣∣ at a distance r = |~r| from the axis as a function of r and and the
velocity va ≡ v(r=a) at the edge of the eye.
Compute ω inside the eye, assuming va = 180 km/h.

ii. Show that for r > a the tornado is equivalent to a vortex at x1 = x2 = 0 (as in exercise 11.ii).
What is the circulation around a closed curve circling this equivalent vortex?

iii. Assuming that the pressure P far from the tornado equals the “normal” atmospheric pressure P 0,
determine P (r) for r > a. Compute the barometric depression ∆P ≡ P 0 − P at the edge of the eye.
Consider a horizontal roof made of a material with mass surface density 100 kg/m2: is it endangered
by the tornado?

16. Vortex sheet
Consider a flow for which the vorticity ~ω = ~∇ ×~v is large in a thin layer of thickness δ. If the

product δ ·~ω remains finite—and converges towards a vector ~$ in the plane tangent to the layer—when
δ → 0, the surface to which the layer shrinks in that limit is referred to as vortex sheet .

Prove that if some surface S is either a vortex sheet, or a surface at which the tangential component
of the velocity is discontinuous, then ~$×~en = [[~v‖]] with ~en the (local) unit normal vector to S and [[~v‖]]
the (local) jump of the velocity component tangential to S. Consequently, a vortex sheet is a surface
of tangential discontinuity of the velocity, and reciprocally.
Vortex sheets arise for example in the flow around the wing of an airplane
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Tutorial sheet 6

Discussion topic: What is a potential flow? What are the corresponding equations of motion?

17. Statics of rotating fluids
This exercise is strongly inspired by Chapter 13.3.3 of the lecture notes on Applications of Classical Physics by Roger D. Blandford
and Kip S. Thorne.

Consider a fluid, bound by gravity, which is rotating rigidly, i.e. with a uniform angular velocity ~Ω0

with respect to an inertial frame, around a given axis. In a reference frame that co-rotates with the
fluid, the latter is at rest, and thus governed by the laws of hydrostatics—except that you now have to
consider an additional term. . .

i. Relying on your knowledge from point mechanics, show that the usual equation of hydrostatics (in
an inertial frame) is replaced in the co-rotating frame by

1

ρ(~r)
~∇P (~r) = −~∇

[
Φ(~r) + Φcen.(~r)

]
, (1)

where Φcen.(~r) ≡ −1
2

[
~Ω0 × ~r

]2 denotes the potential energy from which the centrifugal inertial force
(density) derives, ~fcen. = −ρ~∇Φcen., while Φ(~r) is the gravitational potential energy.

ii. Show that Eq. (1) implies that the equipotential lines of Φ + Φcen. coincide with the contours of
constant mass density as well as with the isobars.

iii. Consider a slowly spinning fluid planet of massM , assuming for the sake of simplicity that the mass
is concentrated at the planet center, so that the gravitational potential is unaffected by the rotation.
Let Re resp. Rp denote the equatorial resp. polar radius of the planet, where |Re − Rp| � Re ' Rp,
and g be the gravitational acceleration at the surface of the planet.
Using questions i. and ii., show that the difference between the equatorial and polar radii is

Re −Rp '
R2
e |~Ω0|2

2g
.

Compute this difference in the case of Earth (Re ' 6.4 × 103 km)—which as everyone knows behaves
as a fluid if you look at it long enough—and compare with the actual value.

18. Potential flow with a vortex. Magnus effect
The purpose of this exercise is to introduce a simplified model for the Magnus effect, which was

discussed in the lectures.

~v∞ ~ur
~uθ

θ

1
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One can show (cf. Landau–Lifshitz, Fluid dynamics, § 10) that the flow velocity of an incompressible
perfect fluid around a cylinder of radius R at rest, with the uniform condition ~v(~r) =~v∞ far from the
cylinder—~v∞ being perpendicular to the cylinder axis—, is given by

~v(r, θ) = v∞

[(
1− R2

r2

)
cos θ ~ur −

(
1 +

R2

r2

)
sin θ ~uθ

]
, (2)

where (r, θ) are polar coordinates—the third dimension (z), along the cylinder axis, plays no role—with
the origin at the center of the cylinder (see Figure) and ~ur, ~uθ unit length vectors.

One superposes to the velocity field (2) a vortex with circulation Γ, corresponding to a flow velocity

~v(r, θ) =
Γ

2πr
~uθ. (3)

i. Let C ≡ Γ/(4πRv∞). Determine the points with vanishing velocity for the flow resulting from
superposing (2) and (3).
Hint : Distinguish the two cases C < 1 and C > 1.

ii. How do the streamlines look like in each case? Comment on the physical meaning of the result.

iii. Express the force per unit length d~F/dz exerted on the cylinder by the flow (2)+(3) as function
of Γ, v∞ and the mass density ρ of the fluid.

19. Two-dimensional potential flow. Teapot effect
dedicated mit freundlichen Grüßen to T.L., for whom this exercise was the highlight of the lectures.

Consider a two-dimensional potential flow with velocity~v(t, x, y), with (x, y) Cartesian coordinates.
Let ϕ(t, x, y) be the corresponding velocity potential (~v = −~∇ϕ) and ψ(t, x, y) the so-called “stream
function”, such that vx = −∂yψ and vy = ∂xψ. Define a complex variable z by z = x+ iy.

i. Show that the complex potential defined by φ = ϕ+ iψ is a holomorphic/analytic function of z, by
checking that the Cauchy–Riemann equations hold.

ii. Show that the stream function obeys the Laplace differential equation and that the lines of constant
ψ(t, x, y) are the streamlines of the flow.

iii. Check that the “complex velocity” w ≡ −dφ

dz
equals vx − ivy.

iv. Consider the complex potential φ(z) = Azn with A ∈ R and n ≥ 1/2. Show that this potential
allows you to describe the flow in the sector Ê delimited by two walls making an angle α = π/n.
Hint : Landau–Lifshitz, Fluid dynamics, § 10.

v. What can you say about the flow velocity in the vicinity of the end-corner of the sector Ê?
Hint : Distinguish the cases α < π and α > π.

vi. Teapot effect
If one tries to pour tea “carefully” from a teapot, one will observe that the liquid will trickle along the

lower side of the nozzle, instead of falling down into the cup waiting below. Explain this phenomenon
using the flow profile introduced above (in the case α > π) and the Bernoulli equation.
Literature: Jearl Walker, Scientific American, Oct. 1984 (= Spektrum der Wissenschaft, Feb. 1985).

vii. Assuming now that you are using the potential φ(z) = Azn to model the flow of a river, which
qualitative behavior can you anticipate for its bank?
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Tutorial sheet 7

Discussion topics: What is a sound wave? How do you derive the corresponding equation of motion?
How is the speed of sound defined? What happens when the amplitude of the wave becomes large?

20. One-dimensional “similarity flow”
Consider a perfect fluid at rest in the region x ≥ 0 with pressure P 0 and mass density ρ0; the region

x < 0 is empty (P = 0, ρ = 0). At time t = 0, the wall separating both regions is removed, so that the
fluid starts flowing into the region x < 0. The goal of this exercise is to solve this instance of Riemann’s
problem by determining the flow velocity v(t, x) for t > 0. It will be assumed that the pressure and
mass density of the fluid remain related by

P
P 0

=

(
ρ

ρ0

)γ
, with γ > 1

throughout the motion. This relation also gives you the speed of sound cs(ρ).

i. Assume that the dependence on t and x of the various fields involves only the combination u ≡ x/t.1
Show that the continuity and Euler equations can be recast as[

u− v(u)
]
ρ′(u) = ρ(u) v′(u)

ρ(u)
[
u− v(u)

]
v′(u) = c2s(ρ(u)) ρ′(u),

where ρ′ resp. v′ denote the derivative of ρ resp. v with respect to u.

ii. Show that the velocity is either constant, or obeys the equation u− v(u) = cs(ρ(u)), in which case
the squared speed of sound takes the form c2s(ρ) = c2s(ρ0)(ρ/ρ0)

γ−1.

iii. Show that the results of i. and ii. lead to the relation

v(u) = a+
2

γ − 1
cs(ρ(u)),

where a denotes a constant whose value is fixed by the condition that v(u) remain continuous inside
the fluid. Show eventually that in some interval for the values of u, the norm of v is given by

|v(u)| = 2

γ + 1

[
cs(ρ0)− u

]
.

iv. Sketch the profiles of the mass density ρ(u) and the streamlines x(t) and show that after the
removal of the separation at x = 0 the information propagates with velocity 2cs(ρ0)/(γ − 1) towards
the negative-x region, while it moves to the right with the speed of sound cs(ρ).

21. Inviscid Burgers equation
The purpose of this exercise is to show how an innocent-looking—yet non-linear—partial differential equation
with a smooth initial condition may lead after finite amount of time to a discontinuity, i.e. a shock wave.

Neglecting the pressure term in the one-dimensional Euler equation leads to the so-called inviscid
Burgers equation

∂v(t, x)

∂t
+ v(t, x)

∂v(t, x)

∂x
= 0.

i. Show that the solution with (arbitrary) given initial condition v(0, x) for x ∈ R obeys the implicit
equation v(0, x) = v

(
t, x+ v(0, x) t

)
.

Hint : http://en.wikipedia.org/wiki/Burgers’_equation
1... which is what is meant by “self-similar”.

1
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ii. Consider the initial condition v(0, x) = v0 e−(x/x0)
2 with v0 and x0 two real numbers. Show that

the flow velocity becomes discontinuous at time t =
√

e/2x0/v0, namely at x = x0
√

2.

22. (1+1)-dimensional relativistic motion
On May 28th, the flow velocities considered in the lectures will reach the relativistic regime. To prepare for this
event, you may refresh your knowledge on Special Relativity. This exercise is here to help you in that direction,
and also introduces coordinates which will be used later in the lectures.

Consider a (1+1)-dimensional relativistic motion along a direction denoted as x, where “1+1” stands
for one time and one spatial dimension. A first possibility is to use Minkowski (x0, x1) = (t, x) coordi-
nates, such that the metric tensor has components g00 ≡ gtt = −1, g11 ≡ gxx = +1, g01 = g10 = 0.2 If
there is a high-velocity motion in the x-direction, a better choice might be to used the proper time (of
a comoving observer) τ and spatial rapidity ς such that

x0
′ ≡ τ ≡

√
t2 − x2, x1

′ ≡ ς ≡ 1

2
log

t+ x

t− x
where |x| ≤ t.

Throughout, we use a system of units in which the speed of light in vacuum c equals 1, as well as
Einstein’s summation convention.

i. Check that the relations defining τ and ς can be inverted, yielding the much simpler

t = τ cosh ς, x = τ sinh ς.

(Hint: Recognize 1
2 log 1+u

1−u).
Deduce the following relationship between the basis vectors of the two coordinate systems{

~eτ (τ, ς) = cosh ς ~et + sinh ς ~ex

~eς(τ, ς) = τ sinh ς ~et + τ cosh ς ~ex

and write down the metric tensor g0′0′ ≡ gττ , g1′1′ ≡ gςς . . . in the new coordinate system.
For the sake of completeness, give also the components gµ′ν′ of the inverse metric tensor.

ii. Inspiring yourself from what was done in the case of the two-dimensional Euclidean plane in the
lecture, compute the Christoffel symbols Γµ

′

ν′ρ′ where the primed indices run over all values 0′, 1′.

iii. Let Nµ denote the components of a “2-vector”.
Write down the covariant derivative dν′N

µ′ ≡ dNµ′/dxν
′ that generalizes to curvilinear (τ, ς) coordi-

nates the derivative ∂νNµ ≡ ∂Nµ/∂xν of Minkowski coordinates. Compute the “2-divergence” dµ′N
µ′ .

iv. Let Tµν denote the components of a symmetric
(
2
0

)
-tensor, such that T 01 = 0.

Write down the covariant derivative dρ′T
µ′ν′ and compute dµ′T

µ′ν′ for ν ′ ∈ {τ, ς}.

v. Draw on a spacetime diagram—with t on the vertical axis and x on the horizontal axis—the lines
of constant τ and those of constant ς.

Remark: The coordinates (τ, σ) are sometimes called Milne coordinates.

2Note that I shall use the “mostly plus” convention for the metric tensor, in which timelike vectors have a negative
semi-norm.
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Tutorial sheet 8

Discussion topics: What are the fundamental equations of the dynamics of a relativistic fluid?
What is the relation between the energy-momentum tensor of a perfect relativistic fluid and its internal
energy, pressure, and four-velocity? How is the latter defined?

23. Propagation of internal waves in the ocean
This exercise is inspired by an article (in French) by L. Gostiaux and T. Dauxois published in the Bulletin de l’Union des Professeurs
de Physique et de Chimie (Nov. 2004)

The properties of several important instances of fluids found in nature—in particular their mass
density ρ—depend on the altitude/depth z (oriented upwards): these fluids are said to be stratified . In
the example of ocean water, ρ depends on depth “directly”, i.e. because it is a function of pressure P
which depends itself on z, but also “indirectly”, inasmusch as depth influences the salinity1 [concentration
in salt(s)], which in turn affects ρ.

The purpose of this exercise is to investigate internal waves in a stratified fluid at rest and in par-
ticular to exemplify a rather unusual dispersive behavior. Throughout, we consider a two-dimensional
problem; as in the lecture, “equilibrium” quantities, related to the unperturbed fluid in absence of wave,
are denoted with a subscript 0.

i. Brunt–Väisälä frequency
If a fluid particle is displaced vertically from its equilibrium position z0 by an amount δz quickly

enough, it will evolve adiabatically and without adjusting its salinity, so that when it is at z0 + δz, its
mass density ρ′ differs from the equilibrium mass density ρ0(z0 + δz) at that depth.
a) Considering the forces acting on the displaced fluid particle, show that Newton’s second law gives

ρ′
d2δz

dt2
= −g

[
ρ′ − ρ0(z0 + δz)

]
, (1)

with g the acceleration due to gravity.
The Boussinesq approximation, which will also be used in question ii., consists in approximating the
mass density in the inertial term [left hand side of Eq. (1)] by the equilibrium value ρ0(z0), while still
keeping the “exact” value (here ρ′) in the force term.
b) For the right-hand side of Eq. (1), one introduces a “potential density”2 ρ̄—which equals the mass
density ρ under the same conditions of temperature and salinity, yet at a fixed reference pressure—such
that the difference in the term between square brackets can be recast as −(dρ̄/dz)δz.

Under which condition on the derivative dρ̄/dz is the equilibrium of the stratified fluid stable?
In that case, what is the motion of the fluid particle? You may find it interesting to introduce the
Brunt–Väisälä “frequency” defined by the relation ω2

B–V ≡ −(g/ρ0) dρ̄/dz.

ii. Propagation of internal waves
Starting from a state of (stratified) rest, we consider small perturbations δρ(t, x, z), δP (t, x, z),

δ~v(t, x, z), assuming that the resulting flow is incompressible. We shall assume that the conservation of
the potential density along streamlines reads

∂δρ

∂t
+ δvz

dρ̄

dz
= 0. (2)

1Bonus question to the former “Non-equilibrium physics” students: how? (neglecting the temperature variations)
2For more information, see https://en.wikipedia.org/wiki/Potential_density or http://oceanworld.tamu.edu/

resources/ocng_textbook/chapter06/chapter06_05.htm.

1
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a) Write down the (kinematic) incompressibility condition, which will be hereafter referred to as Eq. (3).
b) Show that the Euler equation in the Boussinesq approximation introduced above gives you to leading
order the usual fundamental equation of hydrostatics, while the subleading order yields

ρ0
∂δvx
∂t

= −∂δP
∂x

, ρ0
∂δvz
∂t

= −∂δP
∂z
− δρ g. (4,5)

Together with Eqs. (2) and (3), you now have four equations for the four unknown fields δρ, δP , δvx,
and δvz.
c) Neglecting the spatial variations of ρ0—which seems at first paradoxical, but amounts to assuming
that the typical length scale of variations

∣∣g/ω2
B–V

∣∣ is much larger than the vertical wavelength of
waves—show that equations (2)–(5) lead to the differential equation

∂4δvz
∂t2 ∂x2

+
∂4δvz
∂t2 ∂z2

= −ω2
B–V

∂2δvz
∂x2

. (6)

[Hint : consider (2) and (5) on the one hand, (3) and (4) on the other hand]
Convince yourself that δvx, δP and δρ obey similar equations.

d) Show that the harmonic ansatz δvz = δ̃vze−i(ωt−
~k·~r) leads to the dispersion relation

ω = ±ωB–V sinβ~k, (7)

where β~k is the angle between the wave vector ~k and the z-direction. What do you find surprising here?
Discuss the physics for various values of ω (consider 4 cases!).
e) Compute the phase velocity ~cϕ(~k) (remember that it is directed along ~k) and the group velocity
~cg(~k) ≡ dω/d~k following from the dispersion relation (7), and compare them with each other. Your
result begs for comments!

24. Energy-momentum tensor
Let R denote a fixed reference frame. Show with the help of a Lorentz transformation that the

Minkowski coordinates of the (local) energy-momentum tensor of a perfect fluid whose local rest frame
moves with velocity ~v with respect to R, are given to order O(|~v|/c) by

Tµν =



ε (ε+ P )
v1

c
(ε+ P )

v2

c
(ε+ P )

v3

c

(ε+ P )
v1

c
P 0 0

(ε+ P )
v2

c
0 P 0

(ε+ P )
v3

c
0 0 P


.

Check the compatibility of this result with the general formula for Tµν given in the lecture.

25. Isentropic flow
Let s resp. n denote the entropy density resp. particle number density, and uµ the flow velocity.

The entropy per particle is defined as s/n = S/N . Show that in an isentropic flow [dµ(suµ) = 0] the
entropy per particle is conserved, i.e. d(s/n)/dt = 0.
Hint : If the covariant derivatives dµ upset you, choose Minkowski coordinates, in which dµ = ∂µ.

2
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Tutorial sheet 9

26. Equations of motion of a perfect relativistic fluid
In this exercise, we set c = 1 and drop the x variable for the sake of brevity. Remember that the metric
tensor has signature (−,+,+,+).

i. Show that the tensor with components ∆µν ≡ gµν + uµuν defines a projector on the subspace
orthogonal to the 4-velocity.
Denoting by dµ the components of the (covariant) 4-gradient, we define ∇ν ≡ ∆µνdµ. Can you see the
rationale behind this notation?

ii. Show that the energy-momentum conservation equation for a perfect fluid is equivalent to the two
equations

uµdµε+ (ε+ P )dµu
µ = 0 and (ε+ P )uµdµu

ν +∇νP = 0.

Which known equation does the second one evoke?

27. Particle number conservation
Consider a 4-current with components Nµ(x) obeying the continuity equation dµN

µ(x) = 0. Show
that the quantity N =

∫
N0(x) d3~r/c is a Lorentz scalar, by convincing yourself first that N can be

rewritten in the form
N =

1

c

∫
x0=const.

Nµ(x) d3σµ, (1)

where d3σµ =
1

6
εµνρσ d3V νρσ is a 4-vector, with d3V νρσ the antisymmetric 4-tensor defined by

d3V 012 = dx0 dx1 dx2, d3V 021 = −dx0 dx2 dx1, etc.

and εµνρσ the totally antisymmetric Levi–Civita tensor with the convention ε0123 = +1, such that
d3V νρσ represents the 3-dimensional hypersurface element in Minkowski space.

28. Speed of sound in ultrarelativistic matter
Consider a perfect fluid with the usual energy-momentum tensor. Tµν = Pgµν + (ε+ P )uµuν/c2. It

is assumed that there is no conserved particle number relevant for thermodynamics, so that the energy
density in the local rest frame ε is function of a single thermodynamic variable, for instance ε = ε(P ).
Throughout the exercise, Minkowski coordinates are used.

A background “flow” with local-rest-frame energy density and pressure ε0 and P 0 is submitted to a
small perturbation resulting in ε = ε0 + δε, P = P 0 + δP , and ~v = ~0 + δ~v.

i. Starting from the energy-momentum conservation equation ∂µT
µν = 0, show that linearization

to first order in the perturbations leads to the two equations of motion ∂tδε = −(ε0 + P 0)~∇ · δ~v and
(ε0 + P 0)∂tδ~v = −c2~∇δP .

ii. Show that the speed of sound is given by the expression c2s =
c2

dε/dP
.

iii. Compute cs for a fluid obeying the Stefan–Boltzmann law1 P =
gπ2

90

(kBT )4

(~c)3
, with g the number

of degrees of freedom (e.g. g = 2 for blackbody radiation).
Hint : You may find the Gibbs–Duhem relation useful...

1This is a good opportunity to refresh your knowledge on the statistical physics of relativistic systems. Can you give
a physical argument why quantum effects always play a role in such systems, as signaled by the presence of ~ in the
equation of state?

1
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Tutorial sheet 10

Discussion topic: What are the fundamental equations governing the dynamics of non-relativistic
Newtonian fluids?

29. One-dimensional relativistic flow
In the lecture on the 9th of June, the equations describing the “boost-invariant” one-dimensional expan-
sion of a perfect relativistic fluid were presented. Here, we investigate another one-dimensional solution
of the equations of relativistic fluid dynamics, originally due to L. Landau [Izv. Akad. Nauk. USSR 17
(1953) 51], again for a medium without conserved quantum number.

Throughout the exercise, we set c = 1 and drop the x variable for the sake of brevity. Remember
that the metric tensor has signature (−,+,+,+).

i. Considering a one-dimensional expansion along the z-axis, write down the non-trivial equations of
motion expressing energy-momentum conservation in Minkowski coordinates.
From now on, the equation of state of the expanding perfect fluid is assumed to be ε = 3P .

ii. The so-called light-cone coordinates are defined as x+ ≡ t+ z√
2
, x− ≡ t− z√

2
, where the factor 1/

√
2

is not universal, yet convenient.
a) Although this is irrelevant for the rest of the exercise, write down the metric tensor in light-cone
coordinates. Of which type are the basis vectors in the x+ and x− directions?

b) Check the identities
∂

∂t
=

1√
2

(
∂

∂x+
+

∂

∂x−

)
and

∂

∂z
=

1√
2

(
∂

∂x+
− ∂

∂x−

)
.

c) Show that they allow you to transform the equations of motion of question i. into
∂ε

∂x+
+ 2

∂(εe−2y
f )

∂x−
= 0 , 2

∂(εe2y
f )

∂x+
+

∂ε

∂x−
= 0, (1)

with y
f
(x) the position-dependent “flow rapidity”, such that ut = cosh y

f
, uz = sinh y

f
.

iii. Let y± ≡ log
x±

∆
, with ∆ some length scale.

a) Show that the expansion with energy density and flow rapidity

ε(y
+
, y−) = ε0 exp

[
− 4

3

(
y
+

+ y−−
√

y
+

y−
)]

, y
f
(y

+
, y−) =

y
+
− y−
2

(2)

is solution to the equations of motion (1), with ε0 a constant.
Hint : The identity e2y

f
(y+,y−) = x+/x− may be helpful.

b) Transforming the previous solution (2) back to Minkowski variables, sketch the energy density (in
units of ε0) and the flow rapidity as a function of z at successive instants t = ∆, 2∆, 4∆, 8∆ for |z| < t.
Can you guess what physical problem Landau was trying to model?

30. Heat diffusion
In the lecture (June 11), we derived the equation

∂e(t, ~r)

∂t
= ~∇ ·

[
κ(t, ~r)~∇T (t, ~r)

]
valid in a dissipative fluid at rest, with κ the heat capacity.

1



Summer term 2015 Hydrodynamics Universität Bielefeld

Assuming that C ≡ ∂e/∂T and κ are constant coefficients and introducing χ ≡ κ/C, determine
the temperature profile T (t, ~r) for z < 0 with the boundary condition of a uniform temperature in the
plane z = 0, which evolves in time as T (t, z=0) = T0 cos(ωt). At which depth is the amplitude of the
temperature oscillations 10% of that in the plane z = 0?

31. Taylor–Couette flow. Measurement of shear viscosity
A Couette viscometer consists of an annular gap, filled with fluid, between two concentric cylinders

with height L. The outer cylinder (radius R2) rotates around the common axis with angular velocity
Ω2, while the inner cylinder (radius R1) remains motionless. The motion of the fluid is assumed to be
two-dimensional, incompressible and steady.

i. Check that the continuity equation leads to vr = 0, with vr the radial component (in a system of
cylinder coordinates) of the flow velocity.

ii. Prove that the Navier–Stokes equation lead to the equations

vϕ(r)2

r
=

1

ρ

∂P (r)

∂r
(3)

∂2vϕ(r)

∂r2
+

1

r

∂vϕ(r)

∂r
− vϕ(r)

r2
= 0. (4)

What is the meaning of Eq. (3)? Solve Eq. (4) with the ansatz vϕ(r) = ar +
b

r
.

iii. One can show (can you?) that the rϕ-component of the stress tensor is given by

σrϕ = η

(
1

r

∂vr

∂ϕ
+
∂vϕ

∂r
− vϕ

r

)
.

Show that σrϕ = −2bη

r2
, where b is the same coefficient as above.

iv. A torque Mz is measured at the surface of the inner cylinder. How can the shear viscosity η of
the fluid be deduced from this measurement?
Numerical example: R1 = 10 cm, R2 = 11 cm, L = 10 cm, Ω2 = 10 rad·s−1 andMz = 7, 246·10−3 N·m.

2
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Tutorial sheet 11

Discussion topic: Dynamical similarity and the Reynolds number

32. Flow due to an oscillating plane boundary
Consider a rigid infinitely extended plane boundary (y = 0) that oscillates in its own plane with a

sinusoidal velocity U cos(ωt)~ex. The region y > 0 is filled with an incompressible Newtonian fluid with
uniform kinematic shear viscosity ν. We shall assume that volume forces on the fluid are negligible,
that the pressure is uniform and remains constant in time, and that the fluid motion induced by the
plane oscillations do not depend on the coordinates x, z.

i. Determine the flow velocity ~v(t, y) and plot the resulting profile.

ii. What is the characteristic thickness of the fluid layer in the vicinity of the plane boundary that
follows the oscillations? Comment on your result.

33. Dimensional consideration for viscous flows in a tube
Consider the motion of a given fluid in a cylindrical tube of length L and of circular cross section

under the action of a difference ∆P between the pressures at the two ends of the tube. The relation
between the pressure drop per unit length ∆P/L and the magnitude of the mean velocity 〈v〉—defined
as the average over a cross section of the tube—is given by

∆P
L

= C〈v〉n,

with C a constant that depends on the fluid mass density ρ, on the kinematic shear viscosity ν, and on
the radius a of the tube cross section. n is a number which depends on the type of flow: n = 1 if the
flow is laminar (this is the Hagen–Poiseuille law seen in the lecture), while measurements in turbulent
flows by Hagen (1854) resp. Reynolds (1883) have given n = 1.75 resp. n = 1.722.

Assuming that C is—up to a pure number—a product of powers of ρ, ν and a, determine the
exponents of these power laws using dimensional arguments.

34. Laminar flow of a river
A river is modeled as an incompressible Newtonian fluid flowing steadily and laminarly down a

channel—the river bed—with uniform rectangular cross-section inclined at a constant angle α from the
horizontal. The river itself is assumed to be a layer of constant thickness h, so that its free surface is a
plane parallel to its bottom.
To fix notations, let x denote the direction along which water flows, with the basis vector oriented
downstream, and y be the direction perpendicular to the river bed, oriented upwards. The river bottom
resp. free surface is at y = 0 resp. y = h, the vertical edges of the river bed are at z = ±b with 2b the
river width.

i. Equations of motion
Assuming that the pressure at the free surface of the water as well as “at the ends” at large |x|

is constant—i.e., the river flow is caused by gravity, not by a pressure gradient—, show that the flow
velocity magnitude v, pressure P and mass density ρ of the fluid obey the equations

∂v

∂x
= 0

η4v = −ρg sinα

∂P
∂y

= −ρg cosα,

(1)

1
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with the boundary conditions 
v = 0 at y = 0 and at z = ±b
∂v

∂y
= 0 at y = h

P = P 0 at y = h.

(2)

You can immediately write down the solution for the pressure.

ii. Flow velocity
For the sake of brevity, the constant −(ρg/η) sinα will from now on be denoted by c.
a) Check that the ansatz

v(~r) =
∞∑
n=0

fn(y) cos(knz) with kn ≡ (2n+ 1)
π

2b
(3)

automatically fulfills some of the equations and boundary conditions.
b) The physics we are interested is restricted to the region −b ≤ z ≤ b, so that we can extend any
function arbitrarily beyond the river bed edges. Accordingly, a neat trick is to continue the constant c
to a periodic—as suggested by ansatz (3)—non-constant function, namely the sum

c̃(z) =
∞∑
n=0

(−1)n
2 c

knb
cos(knz). (4)

Check (plot!) that this function does coincide with c on the interval −b < z < b. Do you know how it
looks like outside the interval?
c) Write down the (inhomogeneous) differential equation obeyed by each of the functions fn(y). Solve
it under consideration of the as yet unused boundary conditions (2) at y = 0 and y = h.

Normally, you should find v(~r) =

∞∑
n=0

(−1)n
2 c

k3nb

[
cosh

(
kn(y − h)

)
cosh(knh)

− 1

]
cos(knz).

d) Show the mass flow rate across the river cross section is

Q = 4c

( ∞∑
n=0

tanh(knh)

k5nb
− h

b

∞∑
n=0

1

k4n

)
.

Assuming that the river is much wider than deep, compute the leading order (∝ bh3) contribution to
the mass flow rate.

Remark: This leading order coincides with the result in the case where the river bed is unbounded
in the z-direction, see Landau & Lifshitz, Fluid Mechanics, § 17 Problem 5. The next-to-leading order
contribution is unfortunately much harder to obtain, since the Taylor expansion of the tanh term starts
giving divergent series. In a 1910 article by a student of Arnold Sommerfeld—who also thanks Peter
Debye in his acknowledgments—one may find an expression for this next-to-leading order term, which
however seems very dubious, as it is proportional to h4, while the expression of Q is odd in h. . .

2
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Discussion topic: Life at low Reynolds number (educate yourself by reading E. M. Purcell’s article)
and the “scallop theorem”.

35. Equations of fluid dynamics in a uniformly rotating reference frame
This exercise is inspired by Chapter 14.5.1 of the lecture notes on Applications of Classical Physics by Roger D. Blandford and Kip
S. Thorne.

For the study of various physical problems (see examples in question iv.a), it may be more convenient
to study the dynamics of a fluid from a reference frame RΩ0 in uniform rotation with angular velocity
~Ω0 with respect to an inertial frame R0.
In exercise 17, you already investigated hydrostatics in a rotating reference frame: in that case only
the centrifugal acceleration plays a role, which can be entirely recast as the effect of a potential energy
Φcen.(~r) ≡ −1

2

(
~Ω0×~r

)2 leading to the centrifugal inertial force density ~fcen. = −ρ~∇Φcen.. The purpose
of this exercise is to generalize that result to the derivation of (some of) the equations governing a
flowing Newtonian fluid.

i. Kinematics
Recall the expressions of the centrifugal and Coriolis accelerations acting on a small fluid element

in terms of its position vector ~r and velocity ~v (measured in RΩ0) and of the angular velocity.

ii. Incompressibility condition
Writing down the relation between the velocity ~v with respect to RΩ0 and that measured in R0,

show that the incompressibility condition valid in the inertial frame leads to ~∇·~v = 0.

iii. Navier–Stokes equation
Show that the incompressible Navier–Stokes equation from the point of view of an observer at rest

in the rotating reference frame RΩ0 reads (the variables are omitted)

D~v

Dt
= −1

ρ
~∇P eff. + ν4~v − 2~Ω0×~v (1)

where P eff. = P + ρ
(
Φ + Φcen.

)
, with Φ the potential energy from which (non-inertial) volume forces

acting on the fluid derive. Check that you recover the equation of hydrostatics found in exercise 17.

iv. Dimensionless numbers and limiting cases
a) Let Lc resp. vc denote a characteristic length resp. velocity for a given flow. The Ekman and Rossby
numbers are respectively defined as

Ek ≡ ν

|Ω0|L2
c

, Ro ≡ vc
|Ω0|Lc

.

Compute Ek and Ro in a few numerical examples:
– Lc ≈ 100 km, vc ≈ 10 m · s−1, Ω0 ≈ 10−4 rad · s−1, ν ≈ 10−5 m2 · s−1 (wind in the Earth atmosphere);
– Lc ≈ 1000 km, vc ≈ 0.1 m · s−1, Ω0 ≈ 10−4 rad · s−1, ν ≈ 10−6 m2 · s−1 (ocean stream);
– Lc ≈ 10 cm, vc ≈ 1 m · s−1, Ω0 ≈ 10 rad · s−1, ν ≈ 10−6 m2 · s−1 (coffee/tea in your cup).
b) Assuming stationarity, which term in Eq. (1) is negligible (against which) at small Ekman number?
at small Rossby number?

Write down the simplified equation of motion valid when both Ek � 1 and Ro � 1 (to which of
the above examples does this correspond?). How do the (effective) pressure gradient ~∇P eff. and flow
velocity stand relative to each other?

1
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36. Dimensionless equations of motion for sea surface waves
This exercise is partly a continuation of the May 26 lecture on linear sea surface waves, which you should check if you are not sure
of the notations employed.

The equations of motion governing gravity waves at the free surface of an incompressible perfect
liquid (ocean/sea water) in a gravity field −gz~ez are

~∇ ·~v(t,~r) = 0, (2a)

∂~v(t,~r)

∂t
+
[
~v(t,~r) · ~∇

]
~v(t,~r) = −1

ρ
~∇P (t,~r)− g~ez, (2b)

with the boundary conditions vz(t, x, z=0) = 0 at the sea bottom;

vz
(
t, x, z=h0+δh(t, x)

)
=
∂δh(t, x)

∂t
+ vx(t,~r)

∂δh(t, x)

∂x
(2c)

at the free surface, situated at z = h0 + δh(t, x); and a uniform pressure at that same free surface,
which may be re-expressed as

P
(
t, x, z=h0+δh(t, x)

)
= ρgδh(t, x) + P 0 (2d)

with P 0 a constant whose precise value is irrelevant. As in the lecture (May 26), the problem is assumed
to be two-dimensional.

i. We introduce characteristic scales for various quantities: δhc for the amplitude of the surface
deformation; Lc for lengths along the horizontal direction x; and tc for durations—in practice, the
“good” choice would be tc = Lc/cs with cs the speed of sound, yet this is irrelevant here. With their
help, we define dimensionless variables

t∗ ≡ t

tc
, x∗ ≡ x

Lc
, z∗ ≡ z

Lc
,

and fields:
δh∗ ≡ δh

δhc
, v∗x ≡

vx
δhc/tc

, v∗z ≡
vz

δhc/tc
, P ∗ ≡ P − P 0

ρ δhcLc/t2c
.

Considering the latter as functions of the reduced variables t∗, x∗, z∗, rewrite the equations (2a)–(2d),
making use of the dimensionless numbers

Fr ≡
√
Lc/g

tc
, ε ≡ δhc

Lc
, δ ≡ h0

Lc
.

What does the parameter ε control (mathematically)? and the parameter δ (physically)?

ii. Assuming that the flow is irrotational, show that you can combine some of the dimensionless
equations found in question i. into

∂v∗x
∂t∗

+ ε

(
v∗x
∂v∗x
∂x∗

+ v∗z
∂v∗z
∂x∗

)
+

1

Fr2

∂δh∗

∂x∗
= 0.

The various equations you have obtained in this exercise will be exploited later in the lecture, to
derive the Korteweg–de Vries equation, which governs in a specific limit the evolution of the function
φ(t∗, x∗) ≡ δh∗(t∗, x∗)/δ, i.e. the profile of the free water surface.

2
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Discussion topic: Turbulence in fluids: what is it? why does it require a Reynolds number larger than
some critical value to develop? In fully developed turbulence, what are the mean flow, the fluctuating
flow, the Reynolds stress tensor, the energy cascade?

37. Equations of motion of fully developed turbulence
In the lectures of June 30 and July 2, the detailed derivations of a few equations were left aside. The purpose of this exercise is to
fill the gaps.

The velocity field resp. pressure for an incompressible turbulent flow is split into an average and a
fluctuating part as

~v(t,~r) = ~v(t,~r) + ~v′(t,~r) resp. P (t,~r) = P (t,~r) + P ′(t,~r),

where the motion with~v, P is referred to as “mean flow”. For the sake of simplicity, a system of Cartesian
coordinates is being assumed—the components of the gradient thus involve partial derivatives, instead
of the more general covariant derivatives. Throughout the exercise, Einstein’s summation convention
over repeated indices is used.

i. Dynamics of the mean flow
Check that the incompressible Navier–Stokes equation obeyed by ~v and P leads for the mean-flow

quantities to the equation

∂vi

∂t
+
(
~v · ~∇

)
vi = −1

ρ

∂P
∂xi
− ∂v′iv′j

∂xj
+ ν4vi. (1)

Show that this gives for the kinetic energy per unit mass k ≡ 1
2~v

2
associated with the mean flow

the evolution equation

∂k

∂t
+
(
~v · ~∇

)
k = − ∂

∂xj

[
1

ρ
P vj +

(
v′iv′j − 2νSSSij

)
vi

]
+
(
v′iv′j − 2νSSSij

)
SSSij (2)

with SSSij ≡ 1

2

(
∂vi

∂xj
+
∂vj

∂xi
− 2

3
gij ~∇ ·~v

)
the components of the (mean) rate-of-shear tensor.

ii. Dynamics of the fluctuating velocity field
Check that the incompressible Navier–Stokes equation obeyed by ~v and P and Eq. (1) for the

mean-flow quantities lead for the fluctuating part of the velocity to the equation

∂v′i

∂t
+
(
~v′ · ~∇

)
vi +

(
~v · ~∇

)
v′i +

∂

∂xj

(
v′iv′j − v′iv′j

)
= −1

ρ

∂P ′

∂xi
+ ν4v′i. (3)

Show that this gives for the mean kinetic energy k′ ≡ 1
2~v

′2 associated with the flow fluctuations the
evolution equation

∂k′

∂t
+
(
~v · ~∇

)
k′ = − ∂

∂xj

[
1

ρ
P ′v′j +

1

2
v′iv

′iv′j − 2ν v′iSSS
′ij
]
− v′iv′j SSSij − 2νSSS′ijSSS

′
ij (4)

with SSS
′ij ≡ 1

2

(
∂v′i

∂xj
+
∂v′j

∂xi
− 2

3
gij ~∇ ·~v′

)
the components of the fluctuating rate-of-shear tensor.

1
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38. A mathematical model to reproduce some features of fully developed turbulence
While trying to solve the problem of turbulence in (incompressible) fluids, Burgers1 wrote down a

system of simpler equations—a toy mathematical model—that share a few features of the dynamical
equations (1), (3), namely

dv̄(t)

dt
= P − v′(t)2 − ν v̄(t), (5a)

dv′(t)

dt
= v̄(t)v′(t)− ν v′(t), (5b)

with v̄, v′ two unknown functions, while ν is a parameter and P a constant. In these equations, all
quantities are dimensionless.
The questions i., ii., iii., iv. are to a very large extent independent from each other.

i. Enumerate the similarities between Burgers’ set of equations and the “true” ones (1), (3). That is,
identify the physical content of each term in Eqs. (5), and recognize how key mathematical features
of the fluid dynamical equations are seemingly reproduced—while others are obviously not, which may
deserve a discussion as well.

ii. Viewing v̄, v′ as velocities, write down the differential equation governing the evolution of the sum
of the associated kinetic energies (per unit mass. . . ). Note that the terms which you obtain have a
straightforward physical interpretation, which smoothly matches those found in question i.

iii. “Laminar” solution
a) Show that equations (5) admit a set of stationary solutions with a finite “mean flow velocity” v̄ = v̄0
and a vanishing “fluctuating velocity” v′.
b) Check that these solutions are stable as long as P < ν2. That is, any perturbation (δv̄, δv′) yielding
total velocities v̄(t) = v̄0 + δv̄(t), v′(t) = δv′(t) will be exponentially damped. On the other hand, the
solution (v̄ = v̄0, v′ = 0) is unstable for P > ν2.

iv. “Turbulent” solution
Let us now assume P > ν2.
a) Show that equations (5) now admit two sets of stationary solutions, both involving a finite mean
flow velocity v̄—the same for both sets—and a finite fluctuating velocity v′ = ±v′0.
b) Show that both solutions are stable for P > ν2.
Hint : You should have to distinguish two cases, namely ν < P ≤ 9

8ν
2 and P > 9

8ν
2.

The appearance of several regimes—one laminar (v′ = 0), the other turbulent (v′ 6= 0)—depending
on the value of a parameter is reminiscent of the onset of turbulence above a geometry-dependent given
Reynolds number in the real fluid dynamical case: in that respect, Burgers’ toy model reproduces an
important feature of the true equations. On the other hand, the existence of two competing turbulent
solutions above the critical parameter value is an over-simplification of the real turbulent motion.

1J. Burgers, 1895–1981

2



Summer term 2015 Hydrodynamics Universität Bielefeld

Tutorial sheet 14
summary list of discussion topics

• Which idealizations underlie the description of a macroscopic many-body system as a continuous
medium? What is the Knudsen number?

• How is local thermodynamic equilibrium defined?

• What are the Lagrangian and Eulerian descriptions of fluid motion?

• What is mechanical stress? the (Cauchy) stress tensor? How is a fluid defined?

• What are the strain rate tensor, the rotation rate tensor, the vorticity vector? How do they come
about and what do they measure?

• What do the following characterizations of flows mean?
– compressible/incompressible

– vorticity-free

– laminar

– steady

– isentropic

– subsonic/supersonic. How is the Mach number defined?

• What is the Reynolds transport theorem (and its utility)?

• Which quantities are used to describe the motion of a fluid?

• What are the basic equations governing the dynamics of perfect fluids? What are the boundary
conditions?

• What is the Bernoulli equation? Which examples of application do you know?

• What is Kelvin’s circulation theorem? What does it imply for the vorticity?

• What is a potential flow? What are the corresponding equations of motion?

• What is a sound wave? How do you derive the corresponding equation of motion? How is the
speed of sound defined? What happens when the amplitude of the wave becomes large?

• What are the fundamental equations governing the dynamics of non-relativistic Newtonian fluids?
What are the boundary conditions?

• Do you know simple examples of steady flows of non-relativistic Newtonian fluids?

• How can one reformulate the Navier–Stokes equation in dimensionless form? What is dynamical
similarity?

• How is the Reynolds number defined?

• Which modifications due to viscosity affect the dynamics of vorticity? of sound waves?

1
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• Turbulence in fluids: what is it? why does it require a Reynolds number larger than some critical
value to develop?

• In fully developed turbulence, what are the mean flow, the fluctuating flow, the Reynolds stress
tensor, the energy cascade?

• Convective heat transfer: what is the Rayleigh–Bénard convection? Describe its phenomenology.
Which effects plays a role?

• What are the fundamental equations of the dynamics of a relativistic fluid?

• What is the relation between the energy-momentum tensor of a perfect relativistic fluid and its
internal energy, pressure, and four-velocity? How is the latter defined?

• In the case of a flowing dissipative relativistic fluid, what is the Eckart frame? the Landau frame?

• What do the denominations “first-order”, “second-order” dissipative fluid dynamics stand for?
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