Hydrodynamics





Time/place: Lecture (eKVV):  Tue 10:00-12:00 (H8) & Thu 10:00-12:00 (V2-205) 
Tutorials (eKVV):  Group 1: Wed 10:00-12:00 (D01-249);  Group 2: Wed 12:00-14:00 (V2-200)

Instructor: Nicolas Borghini (borghini at physik dot uni-bielefeld dot de) E6-123
Tutors:  Christian Lang, Tobias Mohrmann
 
Oral exam, registration at the end of the semester
 → list of exam dates (please register at the Prüfungsamt)

Homepage:   http://www.physik.uni-bielefeld.de/~borghini/Teaching/Hydrodynamics15
 
News: Results of the evaluation: lecture, tutorials
 
Prerequisites: Classical mechanics, Special Relativity, Thermodynamics & Statistical physics
(Theoretische Physik I, II, III)
 
Literature: * Faber: Fluid dynamics for physicists
* Fließbach: Lehrbuch zur theoretischen Physik: Band I: Mechanik
* Guyon, Hulin, Petit, Mitescu: Physical hydrodynamics  (online access)
* Landau & Lifshitz: Course of theoretical physics: Vol. 6: Hydrodynamics
* Rezzolla & Zanotti: Relativistic hydrodynamics  (online access,  list of corrections)
 
Content: 09.04 Basic ideas on continuous media: continuum hypothesis
14.04 Local thermodynamic equilibrium; Lagrangian description
16.04 Eulerian description; mechanical stress
21.04 Kinematics of deformable bodies
23.04 Classification of fluid flows
          Reynolds transport theorem; mass conservation in a non-relativistic fluid
28.04 Euler equation; energy conservation in a non-relativistic perfect fluid
30.04 & 05.05 Hydrostatics and steady flows of a perfect fluid
05.05 & 07.05 Vortex dynamics in perfect fluids
07.05 Tensor algebra
12.05 Potential flows
          Differentiation in curvilinear coordinates
14.05 Ascension Day
19.05 Two-dimensional potential flows
21.05 Sound waves
21.05 & 26.05 Shock waves
26.05 Linear sea surface waves
28.05 Fundamental equations of relativistic fluid dynamics
02.06 Dynamics of a perfect relativistic fluid
04.06 Fronleichnam
09.06 Examples of perfect relativistic flows
11.06 Fundamental equations of the dynamics of Newtonian fluids
16.06 no lecture (lectures N.B. at NIKHEF)
18.06 Simple steady flows of a Newtonian fluid
23.06 Dynamical similarity; flows at low Reynolds number
25.06 Boundary layer; vorticity in Newtonian fluids
30.06 Turbulence in fluids: phenomenology and basic modeling
02.07 Statistical description of turbulence
07.07 & 09.07 Convective heat transfer
09.07 Sound absorption in Newtonian fluids
          Nonlinear sea surface waves: solitons
14.07 & 16.07 Dynamics of dissipative relativistic fluids
 
Links: * Illustrative videos by the (US) National Committee for Fluid Mechanics Films; you can also check the accompanying film notes
* Further fluid mechanics movies are available here
* Online version of the NIST Handbook of mathematical functions