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Tutorial sheet 11

The exercise marked with a star is homework.

Discussion topics:
– Convective heat transfer: what is the Rayleigh–Bénard convection? Describe its phenomenology.
Which effects play a role?
– What are the fundamental equations of the dynamics of a relativistic fluid? What is the relation
between the energy-momentum tensor of a perfect relativistic fluid and its internal energy, pressure,
and four-velocity? How is the latter defined?

∗∗∗28. (1+1)-dimensional relativistic motion
Consider a (1+1)-dimensional relativistic motion along a direction denoted as z, where the denom-

ination “1+1” stands for one time and one spatial dimension. Throughout the exercise, the other two
spatial directions play no role and the corresponding variables x, y are totally omitted. In addition, we
use a system of units in which the speed of light in vacuum c equals 1, as well as Einstein’s summation
convention over repeated indices.

To describe the physics, one may naturally use Minkowski coordinates (x0, x3) = (t, z), with cor-
responding derivatives (∂0, ∂3) = (∂/∂t, ∂/∂z). If there is a high-velocity motion in the z-direction, a
better choice might be to use the proper time τ and spatial rapidity ς such that1

x0
′ ≡ τ ≡

√
t2 − z2, x3

′ ≡ ς ≡ 1

2
log

t+ z

t− z
where |z| ≤ t. (1)

The partial derivatives with respect to these new coordinates will be denoted (∂0′ , ∂3′) = (∂/∂τ, ∂/∂ς).

i. Check that the relations defining τ and ς can be inverted, yielding the much simpler

t = τ cosh ς, z = τ sinh ς. (2)

(Hint: Recognize 1
2 log 1+u

1−u).

ii. In a change of coordinates {xµ} → {xµ′}, the contravariant components V µ of a 4-vector transform
according to V µ → V µ′ = Λµ

′
νV ν (with summation over ν!) where Λµ

′
ν ≡ ∂xµ

′
/∂xν .

Compute first from Eq. (2) the matrix elements Λνµ′ ≡ ∂xν/∂xµ
′ (with ν ∈ {0, 3}, µ′ ∈ {0′, 3′})

of the inverse transformation {V µ′} → {V µ}. Inverting the 2 × 2-matrix you thus found, deduce the
following relationship between the components of the 4-vector in the two coordinate systemsV

0′ = cosh ς V 0 − sinh ς V 3

V 3′ = −1

τ
sinh ς V 0 +

1

τ
cosh ς V 3.

(3)

iii. Using the relation ∂ν = Λµ
′
ν∂µ′ and the matrix elements {Λµ

′
ν} you found in ii.—and which can

be read off Eq. (3)—, express the “4-divergence” ∂νV ν of a 4-vector field V ν in terms of the partial
derivatives ∂µ′ and the components V µ′ in the (τ, ς)-system.

You should find a result that does not equal ∂µ′V µ′ = ∂τV
τ + ∂ςV

ς , which is why in the lecture
notes the notation dµ′V

µ′ is used for the 4-divergence in an arbitrary coordinate system.

iv. Draw on a spacetime diagram—with t on the vertical axis and z on the horizontal axis—the lines
of constant τ and those of constant ς.

Remark: The coordinates (τ, ς) are sometimes called Milne coordinates.
1ς = \varsigma is the word-final form for the lower case sigma, not to be confused with ζ (zeta).
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29. Quantum number conservation
Consider a 4-current with components Nµ(x) obeying the continuity equation ∂µNµ(x) = 0, where

the {xµ} hidden in the notation ∂µ are Minkowski coordinates. Show that the quantity

N =
1

c

∫
N0(x) d3~r

is a Lorentz scalar, by convincing yourself first that it can be rewritten in the form

N =
1

c

∫
x0=const.

Nµ(x) d3σµ, (4)

where d3σµ =
1

6
εµνρσ d3V νρσ is a 4-vector, with d3V νρσ the antisymmetric 4-tensor defined by

d3V 012 = dx0 dx1 dx2, d3V 021 = −dx0 dx2 dx1, etc.

and εµνρσ the totally antisymmetric Levi–Civita symbol with the convention ε0123 = +1, such that
d3V νρσ represents the 3-dimensional hypersurface element in Minkowski space.
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