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Tutorial sheet 10

The exercise marked with a star is homework.

Discussion topic: Turbulence in fluids: what is it? Why does it require a Reynolds number larger
than some critical value to develop? In fully developed turbulence, what are the mean flow, the fluctu-
ating flow, the Reynolds stress tensor, the energy cascade?

∗∗∗26. A mathematical model to reproduce some features of fully developed turbulence
While trying to solve the problem of incompressible turbulence in fluids, Burgers (again!) wrote

down a system of simpler equations—a toy mathematical model—that share a few features of the
dynamical equations governing the mean flow and the flow fluctuations, namely

dv̄(t)

dt
= P − v′(t)2 − ν v̄(t), (1a)

dv′(t)

dt
= v̄(t)v′(t)− ν v′(t), (1b)

with v̄, v′ two unknown functions, while ν is a parameter and P a constant. In these equations, all
quantities (including t) are dimensionless and real.
The questions i., ii., iii., iv. are to a very large extent independent from each other.

i. Enumerate the similarities between Burgers’ set of equations and the “true” ones given in the lecture.
That is, identify the physical content of each term in Eqs. (1), and recognize how key mathematical
features of the fluid dynamical equations are seemingly reproduced—while others are obviously not,
which may deserve a discussion as well.

ii. Viewing v̄, v′ as velocities, write down the differential equation governing the evolution of the sum
of the associated kinetic energies (per unit mass. . . ). Note that the terms which you obtain have a
straightforward physical interpretation, which smoothly matches those found in question i.

iii. “Laminar” solution
a) Show that equations (1) admit a set of stationary solutions with a finite “mean flow velocity” v̄ = v̄0
and a vanishing “fluctuating velocity” v′.
b) Check that these solutions are stable as long as P < ν2. That is, any perturbation (δv̄, δv′) yielding
total velocities v̄(t) = v̄0 + δv̄(t), v′(t) = δv′(t) will be exponentially damped. On the other hand, the
solution (v̄ = v̄0, v′ = 0) is unstable for P > ν2.

iv. “Turbulent” solution
Let us now assume P > ν2.
a) Show that equations (1) now admit two sets of stationary solutions, both involving a finite mean
flow velocity v̄—the same for both sets—and a finite fluctuating velocity v′ = ±v′0.
b) Show that both solutions are stable for P > ν2.
Hint : You should have to distinguish two cases, namely ν < P ≤ 9

8ν
2 and P > 9

8ν
2.

The appearance of several regimes—one laminar (v′ = 0), the other turbulent (v′ 6= 0)—depending
on the value of a parameter is reminiscent of the onset of turbulence above a geometry-dependent given
Reynolds number in the real fluid dynamical case: in that respect, Burgers’ toy model reproduces an
important feature of the true equations. On the other hand, the existence of two competing turbulent
solutions above the critical parameter value is an over-simplification of the real turbulent motion.
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27. Dynamics of the mean flow in fully developed turbulence
The velocity field resp. pressure for an incompressible turbulent flow is split into an average and a

fluctuating part as

~v(t,~r) = ~v(t,~r) + ~v′(t,~r) resp. P (t,~r) = P (t,~r) + P ′(t,~r),

where the motion with~v, P is referred to as “mean flow”. For the sake of simplicity, a system of Cartesian
coordinates is being assumed—the components of the gradient thus involve partial derivatives, instead
of the more general covariant derivatives. Throughout the exercise, Einstein’s summation convention
over repeated indices is used.

Check that the incompressible Navier–Stokes equation obeyed by ~v and P leads for the mean-flow
quantities to the equation

∂vi

∂t
+
(
~v · ~∇

)
vi = −1

ρ

∂P
∂xi
− ∂v′iv′j

∂xj
+ ν4vi. (2)

Show that this gives for the kinetic energy per unit mass k ≡ 1
2~v

2
associated with the mean flow

the evolution equation

∂k

∂t
+
(
~v · ~∇

)
k = − ∂

∂xj

[
1

ρ
P vj +

(
v′iv′j − 2νSSSij

)
vi

]
+
(
v′iv′j − 2νSSSij

)
SSSij (3)

with SSSij ≡ 1

2

(
∂vi

∂xj
+
∂vj

∂xi
− 2

3
gij ~∇ ·~v

)
the components of the (mean) rate-of-shear tensor.
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