# Tutorial sheet 1

The exercise marked with a star is probably better suited as homework.

**Discussion topic:** Which idealizations underlie the description of a macroscopic many-body system as a continuous medium? How is local thermodynamic equilibrium defined?

# \*1. Gradient, divergence and curl of products

Show the following identities involving the nabla operator  $\vec{\nabla}$ , where f,  $f_1$  and  $f_2$  denote scalar fields (on  $\mathbb{R}^3$ ) while  $\vec{V}$ ,  $\vec{V}_1$  and  $\vec{V}_2$  are vector fields.

$$\vec{\nabla}[f_1(\vec{r})f_2(\vec{r})] = [\vec{\nabla}f_1(\vec{r})]f_2(\vec{r}) + f_1(\vec{r})\vec{\nabla}f_2(\vec{r}). \tag{1}$$

$$\vec{\nabla} \cdot \left[ f(\vec{r}) \vec{V}(\vec{r}) \right] = \left[ \vec{\nabla} f(\vec{r}) \right] \cdot \vec{V}(\vec{r}) + f(\vec{r}) \vec{\nabla} \cdot \vec{V}(\vec{r}). \tag{2}$$

$$\vec{\nabla} \times \left[ f(\vec{r}) \vec{V}(\vec{r}) \right] = \left[ \vec{\nabla} f(\vec{r}) \right] \times \vec{V}(\vec{r}) + f(\vec{r}) \vec{\nabla} \times \vec{V}(\vec{r}). \tag{3}$$

$$\vec{\nabla} \cdot [\vec{V}_1(\vec{r}) \times \vec{V}_2(\vec{r})] = \vec{V}_2(\vec{r}) \cdot [\vec{\nabla} \times \vec{V}_1(\vec{r})] - \vec{V}_1(\vec{r}) \cdot [\vec{\nabla} \times \vec{V}_2(\vec{r})]. \tag{4}$$

$$\vec{\nabla} \times \left[ \vec{V}_1(\vec{r}) \times \vec{V}_2(\vec{r}) \right] = \left[ \vec{\nabla} \cdot \vec{V}_2(\vec{r}) \right] \vec{V}_1(\vec{r}) - \left[ \vec{\nabla} \cdot \vec{V}_1(\vec{r}) \right] \vec{V}_2(\vec{r}) + \left[ \vec{V}_2(\vec{r}) \cdot \vec{\nabla} \right] \vec{V}_1(\vec{r}) - \left[ \vec{V}_1(\vec{r}) \cdot \vec{\nabla} \right] \vec{V}_2(\vec{r}). \quad (5)$$

$$\vec{\nabla} \left[ \vec{V}_1(\vec{r}) \cdot \vec{V}_2(\vec{r}) \right] = \vec{V}_1(\vec{r}) \times \left[ \vec{\nabla} \times \vec{V}_2(\vec{r}) \right] + \vec{V}_2(\vec{r}) \times \left[ \vec{\nabla} \times \vec{V}_1(\vec{r}) \right] + \left[ \vec{V}_1(\vec{r}) \cdot \vec{\nabla} \right] \vec{V}_2(\vec{r}) + \left[ \vec{V}_2(\vec{r}) \cdot \vec{\nabla} \right] \vec{V}_1(\vec{r}). \tag{6}$$

Hint: You may introduce Cartesian coordinates if you wish.

### 2. Stationary flow: first example

(This exercise introduces a number of concepts that will only be introduced in later lectures; this should pose you no difficulty.)

Consider the stationary flow defined in the region  $x^1 > 0$ ,  $x^2 > 0$  by its velocity field

$$\vec{\mathbf{v}}(t,\vec{r}) = k(-x^1\vec{\mathbf{e}}_1 + x^2\vec{\mathbf{e}}_2) \tag{7}$$

with k a positive constant,  $\{\vec{e}_i\}$  the basis vectors of a Cartesian coordinate system and  $\{x^i\}$  the coordinates of the position vector  $\vec{r}$ .

### i. Vector analysis

a) Compute the divergence  $\nabla \cdot \vec{\mathbf{v}}(t, \vec{r})$  of the velocity field (7). Check that your result is consistent with the existence of a scalar function  $\psi(t, \vec{r})$  (the *stream function*) such that

$$\vec{\mathbf{v}}(t,\vec{r}) = -\vec{\nabla} \times \left[ \psi(t,\vec{r}) \,\vec{\mathbf{e}}_3 \right] \tag{8}$$

and determine  $\psi(t, \vec{r})$  — there is an arbitrary additive constant, which you may set equal to zero. What are the lines of constant  $\psi(t, \vec{r})$ ?

**b)** Compute now the curl  $\nabla \times \vec{\mathbf{v}}(t, \vec{r})$  and deduce therefrom the existence of a scalar function  $\varphi(t, \vec{r})$  (the *velocity potential*) such that

 $\vec{\mathsf{v}}(t,\vec{r}) = -\vec{\nabla}\varphi(t,\vec{r}). \tag{9}$ 

(*Hint*: remember a theorem you saw in your lectures on classical mechanics and/or electromagnetism.) What are the lines of constant  $\varphi(t, \vec{r})$ ?

#### ii. Stream lines

Determine the *stream lines* at some arbitrary time t. The latter are by definition lines  $\vec{\xi}(\lambda)$  whose tangent is everywhere parallel to the instantaneous velocity field, with  $\lambda$  a parameter along the stream line. That is, they obey the condition

$$\frac{d\vec{\xi}(\lambda)}{d\lambda} = \alpha(\lambda) \vec{\mathbf{v}}(t, \vec{\xi}(\lambda))$$

with  $\alpha(\lambda)$  a scalar function, or equivalently

$$\frac{\mathrm{d}\xi^1(\lambda)}{\mathsf{v}^1(t,\vec{\xi}(\lambda))} = \frac{\mathrm{d}\xi^2(\lambda)}{\mathsf{v}^2(t,\vec{\xi}(\lambda))} = \frac{\mathrm{d}\xi^3(\lambda)}{\mathsf{v}^3(t,\vec{\xi}(\lambda))},$$

with  $d\xi^i(\lambda)$  the coordinates of the (infinitesimal) tangent vector to the stream line.

### 3. Wave equation

Consider a scalar field  $\phi(t,x)$  which obeys the partial differential equation

$$\left(\frac{1}{c^2}\frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial x^2}\right)\phi(t, x) = 0 \tag{10}$$

with initial conditions  $\phi(0,x) = e^{-x^2}$ ,  $\partial_t \phi(0,x) = 0$ . Determine the solution  $\phi(t,x)$  for t > 0.