
Summer term 2024 Universität Bielefeld Hydrodynamics

Tutorial sheet 1

The exercise marked with a star is probably better suited as homework.

Discussion topic: Which idealizations underlie the description of a macroscopic many-body system
as a continuous medium? How is local thermodynamic equilibrium defined?

∗∗∗1. Gradient, divergence and curl of products
Show the following identities involving the nabla operator ~∇, where f , f1 and f2 denote scalar fields

(on R3) while ~V , ~V1 and ~V2 are vector fields.
~∇
[
f1(~r)f2(~r)

]
=

[
~∇f1(~r)

]
f2(~r) + f1(~r)~∇f2(~r). (1)

~∇ ·
[
f(~r)~V (~r)

]
=

[
~∇f(~r)

]
· ~V (~r) + f(~r)~∇ · ~V (~r). (2)

~∇×
[
f(~r)~V (~r)

]
=

[
~∇f(~r)

]
× ~V (~r) + f(~r)~∇× ~V (~r). (3)

~∇ ·
[
~V1(~r)× ~V2(~r)

]
= ~V2(~r) ·

[
~∇× ~V1(~r)

]
− ~V1(~r) ·

[
~∇× ~V2(~r)

]
. (4)

~∇×
[
~V1(~r)× ~V2(~r)

]
=

[
~∇ · ~V2(~r)

]
~V1(~r)−

[
~∇ · ~V1(~r)

]
~V2(~r) +

[
~V2(~r) · ~∇

]
~V1(~r)−

[
~V1(~r) · ~∇

]
~V2(~r). (5)

~∇
[
~V1(~r) · ~V2(~r)

]
= ~V1(~r)×

[
~∇× ~V2(~r)

]
+ ~V2(~r)×

[
~∇× ~V1(~r)

]
+
[
~V1(~r) · ~∇

]
~V2(~r)+

[
~V2(~r) · ~∇

]
~V1(~r). (6)

Hint : You may introduce Cartesian coordinates if you wish.

2. Stationary flow: first example
(This exercise introduces a number of concepts that will only be introduced in later lectures; this should pose
you no difficulty.)

Consider the stationary flow defined in the region x1 > 0, x2 > 0 by its velocity field

~v(t,~r) = k(−x1~e1 + x2~e2) (7)

with k a positive constant, {~ei} the basis vectors of a Cartesian coordinate system and {xi} the coor-
dinates of the position vector ~r.

i. Vector analysis
a) Compute the divergence ~∇ · ~v(t,~r) of the velocity field (7). Check that your result is consistent
with the existence of a scalar function ψ(t,~r) (the stream function) such that

~v(t,~r) = −~∇×
[
ψ(t,~r)~e3

]
(8)

and determine ψ(t,~r) — there is an arbitrary additive constant, which you may set equal to zero. What
are the lines of constant ψ(t,~r)?
b) Compute now the curl ~∇× ~v(t,~r) and deduce therefrom the existence of a scalar function ϕ(t,~r)
(the velocity potential) such that

~v(t,~r) = −~∇ϕ(t,~r). (9)
(Hint : remember a theorem you saw in your lectures on classical mechanics and/or electromagnetism.)
What are the lines of constant ϕ(t,~r)?

ii. Stream lines
Determine the stream lines at some arbitrary time t. The latter are by definition lines ~ξ(λ) whose

tangent is everywhere parallel to the instantaneous velocity field, with λ a parameter along the stream
line. That is, they obey the condition

d~ξ(λ)

dλ
= α(λ)~v(t,~ξ(λ))

1
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with α(λ) a scalar function, or equivalently

dξ1(λ)

v1(t,~ξ(λ))
=

dξ2(λ)

v2(t,~ξ(λ))
=

dξ3(λ)

v3(t,~ξ(λ))
,

with dξi(λ) the coordinates of the (infinitesimal) tangent vector to the stream line.

3. Wave equation
Consider a scalar field φ(t, x) which obeys the partial differential equation(

1

c2
∂2

∂t2
− ∂2

∂x2

)
φ(t, x) = 0 (10)

with initial conditions φ(0, x) = e−x2 , ∂tφ(0, x) = 0. Determine the solution φ(t, x) for t > 0.
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Tutorial sheet 2

The exercise marked with a star is homework.

Discussion topics:
- What are the Lagrangian and Eulerian descriptions? How is a fluid defined?
- What are the strain rate tensor, the rotation rate tensor, and the vorticity vector? How do they

come about and what do they measure?

∗∗∗4. Stationary flow: second example
Consider the fluid flow whose velocity field ~v(t,~r) has coordinates (in a given Cartesian system)

v1(t,~r) = kx2, v2(t,~r) = kx1, v3(t,~r) = 0, (1)
where k is a positive real number, while x1, x2, x3 are the coordinates of the position vector ~r.

i. Determine the stream lines at an arbitrary instant t.

ii. Let X1, X2, X3 denote the coordinates of some arbitrary point M and let t0 be the real number
defined by

kt0 =


−Artanh(X2/X1) if |X1| > |X2|
0 if X1 = ±X2

−Artanh(X1/X2) if |X1| < |X2|.
Write down a parameterization x1(t), x2(t), x3(t), in terms of a parameter denoted by t, of the coordi-
nates of the stream line ~x(t) going through M such that d~x(t)/dt at any point equals the velocity field
at that point, and that either x1(t) = 0 or x2(t) = 0 for t = t0.

iii. Viewing ~x(t) as the trajectory of a point—actually, of a fluid particle—, you already know the
velocity of that point at time t (do you?). What is its acceleration ~a(t)?

iv. Coming back to the velocity field (1), compute first its partial derivative ∂~v(t,~r)/∂t, then the
material derivative

D~v(t,~r)

Dt
≡ ∂~v(t,~r)

∂t
+
[
~v(t,~r) · ~∇

]
~v(t,~r).

Compare ∂~v(t,~r)/∂t and D~v(t,~r)/Dt with the acceleration of a fluid particle found in question iii.

5. Yet another example of motion of a deformable continuous medium
Consider the motion defined in a system of Cartesian coordinates with basis vectors (~e1,~e2,~e3) by

the velocity field with components

v1(t,~r) = f1(t, x
2), v2(t,~r) = f2(t, x

1), v3(t,~r) = 0,

with f1, f2 two continuously differentiable functions.
Compute the strain rate tensor DDD(t,~r) for this motion. What is the volume expansion rate? Give

the rotation rate tensor RRR(t,~r) and the vorticity vector. Under which condition(s) on the functions f1,
f2 does the motion become irrotational?

6. Isotropy of static pressure
Consider a geometrical point at position ~r in a fluid at rest. The stress vector across every surface

element going through this point is normal: ~T (~r) = −P (~r)~en, with ~en the unit vector orthogonal to
the surface element under consideration. Show that the (hydrostatic) pressure P is independent of the
orientation of ~en.
Hint : Consider the forces on the faces of an infinitesimal trirectangular tetrahedron.
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Tutorial sheet 3

The exercise marked with a star is homework.

Discussion topics:
- What is the Reynolds transport theorem (and its utility)?
- What is a perfect fluid? a Newtonian fluid?

∗∗∗7. A flow with cylindrical symmetry: pointlike source
In this exercise and the following one, we use a system of cylindrical coordinates (r, θ, z) with unit

basis vectors (~ur, ~uθ, ~uz). Accordingly, the divergence of a vector field1 ~V (~r) = V r~ur + V θ~uθ + V z~uz is
given by

~∇ · ~V (~r) =
1

r

∂(rV r)

∂r
+

1

r

∂V θ

∂θ
+
∂V z

∂z
.

Consider the fluid motion defined for r 6= 0 by the velocity field

vr(t,~r) =
f(t)

r
, vθ(t,~r) = 0, vz(t,~r) = 0,

with f some scalar function.
a) Compute the volume expansion rate and the vorticity vector.
b) Mathematically, the velocity field is singular at r = 0. Thinking of the velocity profile, what do you
have physically at that point if f(t) > 0? if f(t) < 0?

8. Pointlike vortex
Consider now the fluid motion defined for r 6= 0 by the velocity field

~v(t,~r) =
Γ

2πr
~uθ, Γ ∈ R.

i. Give the corresponding volume expansion rate and vorticity vector. Compute the circulation of the
velocity field along a closed curve circling the z-axis. For which physical phenomenon could this motion
be a (very crude!) model?

ii. The velocity fields of exercise 7 — assuming that f(t) is time-independent — and the present
exercise are analogous to the electrical or magnetic fields created by simple (stationary) distributions
of electric charges or currents. Do you see which?

9. Symmetry of the stress tensor
Let σσσij = −TTTij denote the Cartesian components of the stress tensor in a continuous medium.

Consider an infinitesimal cube of medium, whose edges (length d`) are parallel to the axes of the
coordinate system.

i. Explain why the k-th componentMk of the torque exerted on the cube by the neighboring regions
of the continuous medium obeysMk ∝ −εijkTTTij(d`)3, with εijk the usual Levi-Civita symbol.

ii. Using dimensional considerations, write down the dependence of the moment of inertia I of the
cube on d` and on the medium mass density ρ.

iii. Using the results of the previous two questions, how does the rate of change of the angular velocity
ωk scale with d`? How can you prevent this rate of change from diverging in the limit d`→ 0?

1For the sake of brevity the dependence of V r, V θ, V z and the basis vectors ~ur, ~uθ on the position ~r is not denoted.
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Tutorial sheet 4

The exercise marked with a star is homework.

Discussion topic: What is a perfect fluid? a Newtonian fluid? What are the basic equations
governing their respective motions?

∗∗∗10. General momentum and energy equations in a fluid
In this exercise, the roman indices (i,j. . . ) denote the coordinates of vectors and tensors in a

Cartesian coordinate system, and ∂i denotes the partial derivative with respect to the i-th coordinate
of the position vector ~r in that system. For brevity, the variables (t,~r) of the fields are omitted, and
Einstein’s summation convention over repeated indices is used.

i. Momentum equation
Check that the Euler and Navier–Stokes equations are special cases of the more general equation

ρ
Dvj

Dt
= ∂iσσσ

ij + f jV , (1)

with σσσij the components of Cauchy’s stress tensor and f iV those of the external volume forces acting on
the fluid. If needed, you can find the so-called “constitutive equations” defining σσσij for a perfect and a
Newtonian fluid in the lecture notes.

ii. Energy equations
a) Check the identity

ρ
D

Dt

(
1

2
~v2 +

e

ρ

)
=
∂

∂t

(
1

2
ρ~v2 + e

)
+ ~∇ ·

[(
1

2
ρ~v2 + e

)
~v

]
. (2)

Note that e/ρ is the specific internal energy.
Assuming that the volume forces derive from a time-independent potential energy, ~fV = −ρ~∇Φ,

show the identity
∂(ρΦ)

∂t
+ ~∇ ·

(
ρΦ~v

)
= −~fV ·~v. (3)

What does the term on the right-hand side represent?
b) Using the identities of the previous question, show that the energy equations given for perfect and
Newtonian fluids in the lecture are special cases of the more general equation

ρ
D

Dt

(
1

2
~v2 +

e

ρ

)
= −~∇ · ~Q + ∂i

(
σσσijvj

)
+ ~fV ·~v, (4)

where ~Q denotes the heat flux density.
c) Part of equation (4) is purely mechanical: show that the momentum equation (1) leads to

ρ
D(12~v

2)

Dt
= vj∂iσσσ

ij + ~fV ·~v, (5)

Deduce therefrom the equation governing the rate of change of the specific internal energy. Which form
does this equation for the material derivative of e/ρ take in the case of a perfect fluid? Can you deduce
an equation for De/Dt in perfect fluids, involving the enthalpy density w ≡ e+ P?

The general equation for e/ρ (or e) can then be used, together with thermodynamic identities, to
derive an equation governing the rate of change of the entropy — but not here.

1
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11. Harmonic oscillations in a fluid
Consider the idealized case of a fluid with uniform, yet time dependent mass density: ρ(t). The

fluid velocity field is assumed to be spherically symmetric and with a harmonic dependence on time:
~v(t,~r) = v(r) cos(ω0t)~er, where ~er ≡~r/|~r| ≡~r/r and ω0 a given angular frequency.

Determine the mass density ρ(t) and the dependence v(r).
Hint : In spherical coordinates, the divergence of a purely radial vector field ~V (~r) = Vr(r)~er is

~∇ · ~V (~r) =
1

r2
∂

∂r

[
r2Vr(r)

]
.

2
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Tutorial sheet 5

The exercise marked with a star is homework.

Discussion topics:
- Give the basic equations governing the dynamics of perfect fluids.
- What is the Bernoulli equation? Give some examples of application.

∗∗∗12. Simplified model of star
In an oversimplified approach, one may model a star as a sphere of fluid—a plasma—with uniform

mass density ρ. This fluid is in mechanical equilibrium under the influence of pressure P and gravity.
Throughout this exercise, the rotation of the star is neglected.

i. Determine the gravitational field at a distance r from the center of the star.

ii. Assuming that the pressure only depend on r, write down the equation expressing the mechanical
equilibrium of the fluid. Determine the resulting function P (r). Compute the pressure at the star center
as function of the mass M and radius R of the star. Calculate the numerical value of this pressure for
M = 2× 1030 kg (solar mass) and R = 7× 108 m (solar radius).

iii. The matter constituting the star is assumed to be an electrically neutral mixture of hydrogen
nuclei and electrons. Show that the order of magnitude of the total particle number density of that
plasma is n ≈ 2ρ/mp, with mp the proton mass. Estimate the temperature at the center of the sun.
Hint : mp = 1.6× 10−27 kg; kB = 1.38× 10−23 J ·K−1.

13. Rotating fluid in a uniform gravitational potential
Consider a perfect fluid contained in a straight cylindrical vessel which rotates with constant angular

velocity ~Ω = Ω~e3 about its vertical axis, the whole system being placed in a uniform gravitational
field −g~e3. Assuming that the fluid rotates with the same angular velocity and that its motion is
incompressible, determine the shape of the free surface of the fluid.
Hint : Despite the geometry, working with Cartesian coordinates is quite straightforward. At the free
surface, the fluid pressure is constant (it equals the atmospheric pressure).

14. Stationary vortex
Let ~ω(t, ~r) = Aδ(x1) δ(x2)~e3 be the vorticity field in a fluid, with A a real constant and {xi}

Cartesian coordinates. Determine the corresponding flow velocity field ~v(t, ~r).
Hint : You should invoke symmetry arguments and Stokes’ theorem. A useful formal analogy is provided
by the Maxwell–Ampère equation of magnetostatics.

1
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Tutorial sheet 6

The exercises marked with a star are homework.

Discussion topics:
- What is Kelvin’s circulation theorem? What does it imply for the vorticity?
- What is a potential flow? What are the corresponding equations of motion?

∗∗∗15. Statics of rotating fluids
This exercise is strongly inspired by Chapter 13.3.3 of Modern Classical Physics by Roger D. Blandford and Kip S. Thorne.

Consider a fluid, bound by gravity, which is rotating rigidly, i.e. with a uniform angular velocity ~Ω0

with respect to an inertial frame, around a given axis. In a reference frame that co-rotates with the
fluid, the latter is at rest, and thus governed by the laws of hydrostatics—except that you now have to
consider an additional term. . .

i. Relying on your knowledge from point mechanics, show that the usual equation of hydrostatics (in
an inertial frame) is replaced in the co-rotating frame by

1

ρ(~r)
~∇P (~r) = −~∇

[
Φ(~r) + Φcen.(~r)

]
, (1)

where Φcen.(~r) ≡ −1
2

[
~Ω0 ×~r

]2 denotes the potential energy from which derives the centrifugal inertial
force density, ~fcen. = −ρ~∇Φcen., while Φ(~r) is the gravitational potential energy.

ii. Show that Eq. (1) implies that the equipotential lines of Φ + Φcen. coincide with the contours of
constant mass density as well as with the isobars.

iii. Consider a slowly spinning fluid planet of massM , assuming for the sake of simplicity that the mass
is concentrated at the planet center, so that the gravitational potential is unaffected by the rotation.
Let Re resp. Rp denote the equatorial resp. polar radius of the planet, where |Re − Rp| � Re ' Rp,
and g be the gravitational acceleration at the surface of the planet.
Using questions i. and ii., show that the difference between the equatorial and polar radii is

Re −Rp '
R2

e |~Ω0|2

2g
.

Compute this difference in the case of Earth (Re ' 6.4 × 103 km)—which as everyone knows behaves
as a (viscous) fluid if you look at it long enough—and compare with the actual value.

∗∗∗16. Model of a tornado
In a simplified approach, one may model a tornado as the steady incompressible flow of a perfect

fluid—air—with mass density ρ = 1.3 kg ·m−3, with a vorticity ~ω(~r) = ω(~r)~e3 which remains uniform
inside a cylinder—the “eye” of the tornado—with (vertical) axis along ~e3 and a finite radius a = 50 m,
and vanishes outside.

i. Express the velocity v(r) ≡
∣∣~v(~r)

∣∣ at a distance r = |~r| from the axis as a function of r and and the
velocity va ≡ v(r=a) at the edge of the eye.
Compute ω inside the eye, assuming va = 180 km/h.

ii. Show that for r > a the tornado is equivalent to a vortex at x1 = x2 = 0 (as in exercise 14). What
is the circulation around a closed curve circling this equivalent vortex?

1
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iii. Assuming that the pressure P far from the tornado equals the “normal” atmospheric pressure P 0,
determine P (r) for r > a. Compute the barometric depression ∆P ≡ P 0 − P at the edge of the eye.
Consider a horizontal roof made of a material with mass surface density 100 kg/m2: is it endangered
by the tornado?

17. Heat diffusion
In a Newtonian fluid at rest, the energy balance equation becomes

∂e(t,~r)

∂t
= ~∇ ·

[
κ(t,~r)~∇T (t,~r)

]
with e the internal energy density, κ the heat capacity and T the temperature.

Assuming that C ≡ ∂e/∂T and κ are constant coefficients and introducing χ ≡ κ/C, determine
the temperature profile T (t,~r) for z < 0 with the boundary condition of a uniform, time-dependent
temperature T (t, z = 0) = T0 cos(ωt) in the plane z = 0. At which depth is the amplitude of the
temperature oscillations 10% of that in the plane z = 0?

2
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Tutorial sheet 7

The exercises marked with a star are homework.

Discussion topics:
- What are the fundamental equations governing the dynamics of non-relativistic Newtonian fluids?
- Dynamical similarity and the Reynolds number. You could also educate yourself on the topic of

Life at low Reynolds number and the “scallop theorem” by reading E. M. Purcell’s article (also accessible
via the web page of the lectures)

∗∗∗18. Taylor–Couette flow. Measurement of shear viscosity
A Couette viscometer consists of an annular gap, filled with fluid, between two concentric cylinders

with height L. The outer cylinder (radius R2) rotates around the common axis with angular velocity
Ω2, while the inner cylinder (radius R1) remains motionless. The motion of the fluid is assumed to be
two-dimensional, laminar, incompressible, and steady.

Throughout this exercise, we use a system of cylinder coordinates (r, ϕ, z) with the physicists’ usual
convention, i.e. the corresponding basis vectors are are normalized to unity.

i. Check that the continuity equation leads to vr = 0, with vr the radial component of the flow velocity.

ii. Prove that the Navier–Stokes equation lead to the equations
vϕ(r)2

r
=

1

ρ

∂P (r)

∂r
(1)

∂2vϕ(r)

∂r2
+

1

r

∂vϕ(r)

∂r
− vϕ(r)

r2
= 0. (2)

What is the meaning of Eq. (1)? Solve Eq. (2) with the ansatz vϕ(r) = ar +
b

r
.

iii. One can show that the rϕ-component of the stress tensor is given by

σrϕ = η

(
1

r

∂vr

∂ϕ
+
∂vϕ

∂r
− vϕ

r

)
.

Show that σrϕ = −2bη

r2
, where b is the same coefficient as above.

iv. A torque Mz is measured at the surface of the inner cylinder. How can the shear viscosity η of
the fluid be deduced from this measurement?
Numerical example: R1 = 10 cm, R2 = 11 cm, L = 10 cm, Ω2 = 10 rad·s−1 andMz = 7, 246·10−3 N·m.

∗∗∗19. Flow of a Newtonian fluid down a constant slope
A layer of Newtonian fluid is flowing under the influence of gravity (acceleration g) down a slope

inclined at an angle α from the horizontal. The fluid itself is assumed to have a constant thickness h, so
that its free surface is a plane parallel to its bottom, and the flow is steady, laminar and incompressible.
One further assumes that the pressure at the free surface of the fluid as well as “at the ends” at large
|x| is constant—i.e., the flow is entirely caused by gravity, not by a pressure gradient.
To fix notations, let x denote the direction along which the fluid flows, with the basis vector oriented
downstream, and y be the direction perpendicular to x, oriented upwards.

i. Show that the flow velocity magnitude v and pressure P of the fluid obey the equations
∂v

∂x
= 0 , η4v = −ρg sinα ,

∂P
∂y

= −ρg cosα, (3)

with the boundary conditionsv = 0 at y = 0, ∂v/∂y = 0 at y = h, and P = P 0 at y = h. Determine the
pressure and then the velocity profile.

1
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ii. Compute the rate of volume flow (“volumetric flux”) across a surface S perpendicular to the
x-direction.

20. Flow due to an oscillating plane boundary
Consider a rigid infinitely extended plane boundary (y = 0) that oscillates in its own plane with

a sinusoidal velocity U cos(ωt)~ex. The region y > 0 is filled with an incompressible Newtonian fluid
with uniform kinematic shear viscosity ν ≡ η/ρ. We shall assume that volume forces on the fluid are
negligible, that the pressure is uniform and remains constant in time, and that the fluid motion induced
by the plane oscillations does not depend on the coordinates x, z.

i. Determine the flow velocity ~v(t, y) and plot the resulting profile.

ii. What is the characteristic thickness of the fluid layer in the vicinity of the plane boundary that
follows the oscillations? Comment on your result.

21. Dimensional consideration for viscous flows in a tube
Consider the motion of a given fluid in a cylindrical tube of length L and of circular cross section

under the action of a difference ∆P between the pressures at the two ends of the tube. The relation
between the pressure drop per unit length ∆P/L and the magnitude of the mean velocity 〈v〉—defined
as the average over a cross section of the tube—is given by

∆P
L

= C〈v〉n,

with C a constant that depends on the fluid mass density ρ, on the kinematic shear viscosity ν, and on
the radius a of the tube cross section. n is a number which depends on the type of flow: n = 1 if the
flow is laminar (this is the Hagen–Poiseuille law seen in the lecture), while measurements in turbulent
flows by Hagen (1854) resp. Reynolds (1883) have given n = 1.75 resp. n = 1.722.

Assuming that C is—up to a pure number—a product of powers of ρ, ν and a, determine the
exponents of these power laws using dimensional arguments.

2
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Tutorial sheet 8

The exercise marked with a star is homework.

Discussion topics: What is a sound wave? How do you derive the corresponding equation of motion?
How is the speed of sound defined? What happens when the wave amplitude becomes large? What is
the effect of viscous effects?

∗∗∗22. One-dimensional “similarity flow”
Consider a perfect fluid at rest in the region x ≥ 0 with pressure P 0 and mass density ρ0; the region

x < 0 is empty (P = 0, ρ = 0). At time t = 0, the wall separating both regions is removed, so that the
fluid starts flowing into the region x < 0. The goal of this exercise is to solve this instance of Riemann’s
problem by determining the flow velocity v(t, x) for t > 0. It will be assumed that the pressure and
mass density of the fluid remain related by

P
P 0

=

(
ρ

ρ0

)γ
, with γ > 1

throughout the motion. This relation also gives you the speed of sound cs(ρ).

i. Assume that the dependence on t and x of the various fields involves only the combination u ≡ x/t.1
Show that the continuity and Euler equations can be recast as[

u− v(u)
]
ρ′(u) = ρ(u) v′(u)

ρ(u)
[
u− v(u)

]
v′(u) = c2s(ρ(u)) ρ

′(u),

where ρ′ resp. v′ denote the derivative of ρ resp. v with respect to u.

ii. Show that the velocity is either constant, or obeys the equation u− v(u) = cs(ρ(u)), in which case
the squared speed of sound takes the form c2s(ρ) = c2s(ρ0)(ρ/ρ0)

γ−1.

iii. Show that the results of i. and ii. lead to the relation

v(u) = a+
2

γ − 1
cs(ρ(u)),

where a denotes a constant whose value is fixed by the condition that v(u) remain continuous inside
the fluid. Show eventually that in some interval for the values of u, the norm of v is given by

|v(u)| = 2

γ + 1

[
cs(ρ0)− u

]
.

iv. Sketch the profiles of the mass density ρ(u) and the streamlines x(t) and show that after the
removal of the separation at x = 0 the information propagates with velocity 2cs(ρ0)/(γ − 1) towards
the negative-x region, while it moves to the right with the speed of sound cs(ρ).

23. Inviscid Burgers equation
The purpose of this exercise is to show how an innocent-looking—yet non-linear—partial differential equation
with a smooth initial condition may lead after finite amount of time to a discontinuity, i.e. a shock wave.

Neglecting the pressure term in the one-dimensional Euler equation leads to the so-called inviscid
Burgers equation

∂v(t, x)

∂t
+ v(t, x)

∂v(t, x)

∂x
= 0.

1... which is what is meant by “self-similar”.

1
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i. Show that the solution with (arbitrary) given initial condition v(0, x) for x ∈ R obeys the implicit
equation v(0, x) = v

(
t, x+ v(0, x) t

)
.

Hint : http://en.wikipedia.org/wiki/Burgers’_equation

ii. Consider the initial condition v(0, x) = v0 e
−(x/x0)2 with v0 and x0 two real numbers. Show that

the flow velocity becomes discontinuous at time t =
√
e/2x0/v0, namely at x = x0

√
2.

2
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Tutorial sheet 9

The exercise marked with a star is homework.

∗∗∗24. Instabilities in parallel shear flows
In the lectures we considered a number of simple steady incompressible flows with velocity of the

form ~v(~r) = v(y)~ex, where x, y, z are Cartesian coordinates. For the stability of such so-called “parallel
shear flows” there exist a number of results, some of which are discussed in this exercise. Throughout we
assume that the mass density ρ0 remains uniform and constant, and that there are no external forces.

i. Starting from the continuity and incompressible Navier–Stokes equations, write down the linearized
equations of motion governing the evolution of perturbations δ~v(t,~r), δP (t,~r) of steady fields~v0(~r) and
P 0(~r), assuming ~v0(~r) = v0(y)~ex.

One can show (Squire’s theorem) that it is sufficient to investigate perturbations that are two-
dimensional, i.e. that do not depend on z and such that δ~v lies in the (x, y)-plane. To describe the
latter, one can introduce the associated stream function ψ(t,~r), such that the non-zero components of
δ~v are given by δvx = −∂ψ/∂y and δvy = ∂ψ/∂x.

ii. Assume first that the fluid is perfect.
a) Using the linearized equations of motion you obtained in i., show that the stream function satisfies
the partial differential equation[

∂

∂t
+ v0(y)

∂

∂x

]
4ψ(t,~r)− ∂2v0(y)

∂y2
∂ψ(t,~r)

∂x
= 0. (1)

b) Making the Fourier ansatz ψ(t,~r) = ψ̃(y)ei(kx−ωt), show that Eq. (1) leads to Rayleigh’s equation[
v0(y)− c(k)

]( ∂2
∂y2
− k2

)
ψ̃(y)− ∂2v0(y)

∂y2
ψ̃(y) = 0, (2)

where c(k) ≡ ω/k.
For a given profile v0(y) of the unperturbed flow and a fixed wavenumber k, this is an eigenvalue

equation, whose solutions are eigenfunctions ψ̃(y) with associated eigenvalues c(k). Show that if ψ̃
is an eigenfunction associated with some eigenvalue c(k), then its complex conjugate ψ̃∗ is also an
eigenfunction, with eigenvalue c(k)∗. What does this mean for the stability of the unperturbed flow in
case one of the eigenvalues is not real?

iii. If you still have time, you may show that in a Newtonian incompressible fluid, Rayleigh’s equation
is replaced by the Orr–Sommerfeld equation[

v0(y)− c(k)
]( ∂2
∂y2
− k2

)
ψ̃(y)− ∂2v0(y)

∂y2
ψ̃(y) =

ν

ik

(
∂2

∂y2
− k2

)2
ψ̃(y), (3)

with ν ≡ η/ρ0 the kinematic shear viscosity of the fluid.

25. Instability of the viscous Burgers equation
Neglecting the pressure term in the Navier–Stokes equation for a one-dimensional incompressible

problem without external force yields the so-called viscous Burgers equation1

∂v(t, x)

∂t
+ v(t, x)

∂v(t, x)

∂x
= ν

∂2v(t, x)

∂x2
, (4)

1You already encountered its inviscid version in exercise 23.

1
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where ν ≡ η/ρ is the kinematic shear viscosity of the fluid. A trivial solution to this equation of motion
is the steady uniform flow v(t, x) = v0 .

Let us add a perturbation δv(t, x).
a) Write down the linearized equation of motion governing the evolution of δv and derive the corre-
sponding dispersion relation using an appropriate Fourier ansatz.
b) Fixing first k ∈ R, check that the perturbation is exponentially damped in time.
c) Consider now a fixed ω ∈ R. How does the perturbation propagate along the x-direction? (Hint :
For the sake of simplicity you may restrict your discussion to the small-viscosity case ων � v20.)

2
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Discussion topic: Turbulence in fluids: what is it? Why does it require a Reynolds number larger
than some critical value to develop? In fully developed turbulence, what are the mean flow, the fluctu-
ating flow, the Reynolds stress tensor, the energy cascade?

∗∗∗26. A mathematical model to reproduce some features of fully developed turbulence
While trying to solve the problem of incompressible turbulence in fluids, Burgers (again!) wrote

down a system of simpler equations—a toy mathematical model—that share a few features of the
dynamical equations governing the mean flow and the flow fluctuations, namely

dv̄(t)

dt
= P − v′(t)2 − ν v̄(t), (1a)

dv′(t)

dt
= v̄(t)v′(t)− ν v′(t), (1b)

with v̄, v′ two unknown functions, while ν is a parameter and P a constant. In these equations, all
quantities (including t) are dimensionless and real.
The questions i., ii., iii., iv. are to a very large extent independent from each other.

i. Enumerate the similarities between Burgers’ set of equations and the “true” ones given in the lecture.
That is, identify the physical content of each term in Eqs. (1), and recognize how key mathematical
features of the fluid dynamical equations are seemingly reproduced—while others are obviously not,
which may deserve a discussion as well.

ii. Viewing v̄, v′ as velocities, write down the differential equation governing the evolution of the sum
of the associated kinetic energies (per unit mass. . . ). Note that the terms which you obtain have a
straightforward physical interpretation, which smoothly matches those found in question i.

iii. “Laminar” solution
a) Show that equations (1) admit a set of stationary solutions with a finite “mean flow velocity” v̄ = v̄0
and a vanishing “fluctuating velocity” v′.
b) Check that these solutions are stable as long as P < ν2. That is, any perturbation (δv̄, δv′) yielding
total velocities v̄(t) = v̄0 + δv̄(t), v′(t) = δv′(t) will be exponentially damped. On the other hand, the
solution (v̄ = v̄0, v′ = 0) is unstable for P > ν2.

iv. “Turbulent” solution
Let us now assume P > ν2.
a) Show that equations (1) now admit two sets of stationary solutions, both involving a finite mean
flow velocity v̄—the same for both sets—and a finite fluctuating velocity v′ = ±v′0.
b) Show that both solutions are stable for P > ν2.
Hint : You should have to distinguish two cases, namely ν < P ≤ 9

8ν
2 and P > 9

8ν
2.

The appearance of several regimes—one laminar (v′ = 0), the other turbulent (v′ 6= 0)—depending
on the value of a parameter is reminiscent of the onset of turbulence above a geometry-dependent given
Reynolds number in the real fluid dynamical case: in that respect, Burgers’ toy model reproduces an
important feature of the true equations. On the other hand, the existence of two competing turbulent
solutions above the critical parameter value is an over-simplification of the real turbulent motion.

1
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27. Dynamics of the mean flow in fully developed turbulence
The velocity field resp. pressure for an incompressible turbulent flow is split into an average and a

fluctuating part as

~v(t,~r) = ~v(t,~r) + ~v′(t,~r) resp. P (t,~r) = P (t,~r) + P ′(t,~r),

where the motion with~v, P is referred to as “mean flow”. For the sake of simplicity, a system of Cartesian
coordinates is being assumed—the components of the gradient thus involve partial derivatives, instead
of the more general covariant derivatives. Throughout the exercise, Einstein’s summation convention
over repeated indices is used.

Check that the incompressible Navier–Stokes equation obeyed by ~v and P leads for the mean-flow
quantities to the equation

∂vi

∂t
+
(
~v · ~∇

)
vi = −1

ρ

∂P
∂xi
− ∂v′iv′j

∂xj
+ ν4vi. (2)

Show that this gives for the kinetic energy per unit mass k ≡ 1
2~v

2
associated with the mean flow

the evolution equation

∂k

∂t
+
(
~v · ~∇

)
k = − ∂

∂xj

[
1

ρ
P vj +

(
v′iv′j − 2νSSSij

)
vi

]
+
(
v′iv′j − 2νSSSij

)
SSSij (3)

with SSSij ≡ 1

2

(
∂vi

∂xj
+
∂vj

∂xi
− 2

3
gij ~∇ ·~v

)
the components of the (mean) rate-of-shear tensor.

2
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Discussion topics:
– Convective heat transfer: what is the Rayleigh–Bénard convection? Describe its phenomenology.
Which effects play a role?
– What are the fundamental equations of the dynamics of a relativistic fluid? What is the relation
between the energy-momentum tensor of a perfect relativistic fluid and its internal energy, pressure,
and four-velocity? How is the latter defined?

∗∗∗28. (1+1)-dimensional relativistic motion
Consider a (1+1)-dimensional relativistic motion along a direction denoted as z, where the denom-

ination “1+1” stands for one time and one spatial dimension. Throughout the exercise, the other two
spatial directions play no role and the corresponding variables x, y are totally omitted. In addition, we
use a system of units in which the speed of light in vacuum c equals 1, as well as Einstein’s summation
convention over repeated indices.

To describe the physics, one may naturally use Minkowski coordinates (x0, x3) = (t, z), with cor-
responding derivatives (∂0, ∂3) = (∂/∂t, ∂/∂z). If there is a high-velocity motion in the z-direction, a
better choice might be to use the proper time τ and spatial rapidity ς such that1

x0
′ ≡ τ ≡

√
t2 − z2, x3

′ ≡ ς ≡ 1

2
log

t+ z

t− z
where |z| ≤ t. (1)

The partial derivatives with respect to these new coordinates will be denoted (∂0′ , ∂3′) = (∂/∂τ, ∂/∂ς).

i. Check that the relations defining τ and ς can be inverted, yielding the much simpler

t = τ cosh ς, z = τ sinh ς. (2)

(Hint: Recognize 1
2 log 1+u

1−u).

ii. In a change of coordinates {xµ} → {xµ′}, the contravariant components V µ of a 4-vector transform
according to V µ → V µ′ = Λµ

′
νV ν (with summation over ν!) where Λµ

′
ν ≡ ∂xµ

′
/∂xν .

Compute first from Eq. (2) the matrix elements Λνµ′ ≡ ∂xν/∂xµ
′ (with ν ∈ {0, 3}, µ′ ∈ {0′, 3′})

of the inverse transformation {V µ′} → {V µ}. Inverting the 2 × 2-matrix you thus found, deduce the
following relationship between the components of the 4-vector in the two coordinate systemsV

0′ = cosh ς V 0 − sinh ς V 3

V 3′ = −1

τ
sinh ς V 0 +

1

τ
cosh ς V 3.

(3)

iii. Using the relation ∂ν = Λµ
′
ν∂µ′ and the matrix elements {Λµ

′
ν} you found in ii.—and which can

be read off Eq. (3)—, express the “4-divergence” ∂νV ν of a 4-vector field V ν in terms of the partial
derivatives ∂µ′ and the components V µ′ in the (τ, ς)-system.

You should find a result that does not equal ∂µ′V µ′ = ∂τV
τ + ∂ςV

ς , which is why in the lecture
notes the notation dµ′V

µ′ is used for the 4-divergence in an arbitrary coordinate system.

iv. Draw on a spacetime diagram—with t on the vertical axis and z on the horizontal axis—the lines
of constant τ and those of constant ς.

Remark: The coordinates (τ, ς) are sometimes called Milne coordinates.
1ς = \varsigma is the word-final form for the lower case sigma, not to be confused with ζ (zeta).

1
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29. Quantum number conservation
Consider a 4-current with components Nµ(x) obeying the continuity equation ∂µNµ(x) = 0, where

the {xµ} hidden in the notation ∂µ are Minkowski coordinates. Show that the quantity

N =
1

c

∫
N0(x) d3~r

is a Lorentz scalar, by convincing yourself first that it can be rewritten in the form

N =
1

c

∫
x0=const.

Nµ(x) d3σµ, (4)

where d3σµ =
1

6
εµνρσ d3V νρσ is a 4-vector, with d3V νρσ the antisymmetric 4-tensor defined by

d3V 012 = dx0 dx1 dx2, d3V 021 = −dx0 dx2 dx1, etc.

and εµνρσ the totally antisymmetric Levi–Civita symbol with the convention ε0123 = +1, such that
d3V νρσ represents the 3-dimensional hypersurface element in Minkowski space.

2
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Discussion topics:
– Convective heat transfer: what is the Rayleigh–Bénard convection? Describe its phenomenology.
Which effects play a role?
– What are the fundamental equations of the dynamics of a relativistic fluid? What is the relation
between the energy-momentum tensor of a perfect relativistic fluid and its internal energy, pressure,
and four-velocity? How is the latter defined?

∗∗∗30. Energy-momentum tensor
Let R denote a fixed reference frame. Consider a perfect fluid whose local rest frame at a point

x moves with velocity ~v with respect to R. Show with the help of a Lorentz transformation that the
Minkowski components of the energy-momentum tensor of the fluid at x are given to order O(|~v|/c) by

Tµν =



ε (ε+ P )
v1

c
(ε+ P )

v2

c
(ε+ P )

v3

c

(ε+ P )
v1

c
P 0 0

(ε+ P )
v2

c
0 P 0

(ε+ P )
v3

c
0 0 P


,

where for the sake of brevity the x-dependence of the various fields is omitted. Check the compatibility
of this result with the general formula for Tµν given in the lecture.
∗∗∗31. A family of solutions of the dynamical equations for perfect relativistic fluids

Let {xµ} denote Minkowski coordinates and τ2 ≡ −xµxµ, where the “mostly plus” metric is used.
Show that the following four-velocity, pressure and charge density constitute a solution of the equations
describing the motion of a perfect relativistic fluid with equation of state P = Kε and a single conserved
charge:

uµ(x) =
xµ

τ
, P (x) = P 0

(
τ0
τ

)3(1+K)

, n(x) = n0

(
τ0
τ

)3
N
(
σ(x)

)
, (1)

with τ0, P 0, n0 arbitrary constants and N an arbitrary function of a single argument, while σ is a
function of spacetime coordinates with vanishing comoving derivative: uµ∂µσ(x) = 0.

32. Equations of motion of a perfect relativistic fluid
In this exercise, we set c = 1 and drop the x variable for the sake of brevity. Remember that the metric
tensor has signature (−,+,+,+).
Hint : If the covariant derivatives dµ upset you, assume you have chosen Minkowski coordinates, in which dµ = ∂µ.

i. Check that the tensor with components ∆µν ≡ gµν + uµuν defines a projector on the subspace
orthogonal to the 4-velocity.
Denoting by dµ the components of the (covariant) 4-gradient, we define ∇ν ≡ ∆µνdµ. Can you see the
rationale behind this notation?

ii. Show that the energy-momentum conservation equation for a perfect fluid is equivalent to the two
equations

uµdµε+ (ε+ P )dµu
µ = 0 and (ε+ P )uµdµu

ν +∇νP = 0. (2)

Which known equation does the second one evoke?

1
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33. Vorticity in a perfect relativistic fluid
Consider the kinematic vorticity tensor defined by its components

ωµν ≡
1

2
∆α

µ∆β
ν

(
dβuα − dαuβ

)
, (3)

where ∆α
µ ≡ gαµ + uαuµ (see exercise 32.i.).

a) Why is no calculation necessary to prove the identity ∆µνωµν = 0? Show the identity

ωµν =
1

2

(
dνuµ − dµuν + aµuν − aνuµ

)
, (4)

where aµ ≡ uνdνu
µ.

b) Define a four-vector by1 ωµ ≡ −1
2ε
µνρσωρσuν . What are its components in the local rest frame?

What do you recognize?
c) Show that if aµ = 0, then the vorticity 4-vector obeys the evolution equation

uνdνω
µ = −2

3
(dρu

ρ)ωµ + Sµνω
ν , (5)

where Sµν is the rate-of-shear tensor.

1The convention ε0123 = −1 is used.

2
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∗∗∗34. Speed of sound in ultrarelativistic matter
Consider a perfect fluid with the usual energy-momentum tensor. Tµν = Pgµν +(ε+P )uµuν/c2. It

is assumed that there is no conserved quantum number relevant for thermodynamics, so that the energy
density in the local rest frame ε is function of a single thermodynamic variable, for instance ε = ε(P ).
Throughout the exercise, Minkowski coordinates are used.

A background “flow” with uniform local-rest-frame energy density and pressure ε0 and P 0 is sub-
mitted to a small perturbation resulting in ε = ε0 + δε, P = P 0 + δP , and ~v = ~0 + δ~v.

i. Starting from the energy-momentum conservation equation ∂µT
µν = 0, show that linearization

to first order in the perturbations leads to the two equations of motion ∂tδε = −(ε0 + P 0)~∇ · δ~v and
(ε0 + P 0)∂tδ~v = −c2~∇δP .

ii. Show that the speed of sound is given by the expression c2s =
c2

dε/dP
.

iii. Compute cs for a fluid obeying the Stefan–Boltzmann law1 P =
gπ2

90

(kBT )
4

(~c)3
, with g the number

of degrees of freedom (e.g. g = 2 for blackbody radiation).
Hint : You may find the Gibbs–Duhem relation useful...

1This is a good opportunity to refresh your knowledge on the statistical physics of relativistic systems. Can you give
a physical argument why quantum effects always play a role in such systems, as signaled by the presence of ~ in the
equation of state?

1


	Sheet_1
	Sheet_2
	Sheet_3
	Sheet_4
	Sheet_5
	Sheet_6
	Sheet_7
	Sheet_8
	Sheet_9
	Sheet_10
	Sheet_11
	Sheet_12
	Sheet_13

