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X.4.5 Second order dissipative relativistic fluid dynamics
To remedy the instability of the usual Landau–Lifshitz or Eckart formulations of first-order 

dissipative relativistic fluid dynamics—which is especially a problem for numerical implementations, 
in which rounding errors will quickly propagate if the theory is unstable—, theories going beyond a 
first-order expansion in gradients were developed.

Coming back to an arbitrary 4-velocity u(x), the components of the entropy 4-current S(x) in a 
first-order dissipative theory read

Sµ(x) =
P (x)gµ⌫(x)� Tµ⌫(x)

T (x)
u⌫(x)�

X µa(x)

T (x)
Nµ

a (x), (X.52a)

or equivalently

Sµ(x) = s(x)uµ(x)�
X µa(x)

T (x)
⌫µa (x) +

1

T (x)
qµ(x) (X.52b)

which reduces to the expression between square brackets on the left hand side of Eq. (X.49b) with
Landau’s choice of 4-velocity.

This entropy 4-current is linear in the dissipative 4-currents ⌫(x) and q(x). In addition, it is
independent of the velocity 3-gradients—encoded in the expansion rate rrr(x) ·u(x) and the rate-
of-shear tensor SSS(x)—, which play a decisive role in dissipation. That is, the form (X.52) can be
generalized. A more general form for the entropy 4-current is thus
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or equivalently, component-wise,

Sµ(x) = s(x)uµ(x)�
µN(x)

T (x)
⌫µ(x) +

1

T (x)
qµ(x) +

1

T (x)
Qµ(x), (X.53b)



X.4 Dissipative relativistic fluids 165

with Q(x) a 4-vector, with components Qµ(x), that depends on the flow 4-velocity and its gradients—
where rrr(x) ·u(x) and SSS(x) are traditionally replaced by ⇧(x) and ⇡⇡⇡(x)—and on the dissipative
currents:

Qµ(x) = Qµ
�
u(x),⌫(x), q(x),⇧(x),⇡⇡⇡(x)

�
. (X.53c)

In second order dissipative relativistic fluid dynamics with for simplicity a single conserved
charge, the most general form for the additional 4-vector Q(x) contributing to the entropy density
is [49, 50, 51]
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(X.54a)
where

qN(x) ⌘ q(x)�
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component-wise, this reads
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(X.54b)
The 4-vector Q(x) is now quadratic (“of second order”) in the dissipative currents—in the wider
sense—q(x), ⌫(x), ⇧(x) and ⇡⇡⇡(x), and involves 5 additional coefficients depending on temperature
and particle-number density, ↵0, ↵1, �0, �1, and �2.

Substituting this form of Q(x) in the entropy 4-current (X.53), the simplest way to ensure that its
4-divergence should be positive is to postulate linear relationships between the dissipative currents
and the gradients of velocity, chemical potential (or rather of �µ/T ), and temperature (or rather,
1/T ), as was done in Eqs. (X.50). This recipe yields differential equations for ⇧(x), ⇡⇡⇡(x), qN(x),
representing 9 coupled scalar equations of motion. These describe the relaxation—with appropriate
characteristic time scales ⌧⇧, ⌧⇡⇡⇡, ⌧qN respectively proportional to �0, �2, �1, while the involved “time
derivative” is that in the local rest frame, u ·d—, of the dissipative currents towards their first-order
expressions (X.50).

Adding up the new equations to the usual ones (X.2) and (X.7), the resulting set of equations,
known as (Müller(bd)–)Israel(be)–Stewart(bf) theory, is no longer plagued by the issues that affects
the relativistic Navier–Stokes–Fourier equations.
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