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X.4.3 General equations of motion
By substituting the decompositions (X.36), (X.40) into the generic conservation laws (X.2),

(X.7), one can obtain model-independent equations of motion, that do not depend on any assump-
tion on the various dissipative currents.

For that purpose, let us introduce the notation

r
µ(x) ⌘ �µ⌫(x)d⌫ , (X.45a)

where d⌫ , ⌫ 2 {0, 1, 2, 3} denotes the components of the 4-gradient d—involving covariant deriva-
tives in case a non-Minkowski system of coordinates is being used. In geometric formulation, this
definition reads

rrr(x) ⌘���(x) · d. (X.45b)

As is most obvious in the local rest frame at point x, in which the timelike component r0(x) vanishes,
rrr(x) is the projection of the gradient on the space-like 3-space orthogonal to the 4-velocity. Using
this 3-gradient, the 4-gradient can be written d = �u(u · d) +rrr, i.e. in terms of components

dµ = �uµ(u · d) +rµ. (X.45c)

Recognizing that u · d is the derivative with respect to (proper) time in the local rest frame, this
decomposition has a clear meaning.
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The charge conservation equation (X.2) first yields

dµN
µ

a (x) = uµ(x)dµna(x) + na(x)dµu
µ(x) + dµ⌫

µ

a (x) = 0. (X.46a)

In turn, the conservation (X.7) of the energy momentum tensor (X.37), projected perpendicular to
resp. along the 4-velocity, gives

�⇢

⌫(x)dµT
µ⌫(x) =

⇥
✏(x) + P (x)

⇤
uµ(x)dµu

⇢(x) +r
⇢(x)P (x) +�⇢

⌫(x)dµ⌧
µ⌫(x) = 0 (X.46b)

resp.
u⌫(x)dµT

µ⌫(x) = �uµ(x)dµ✏(x)�
⇥
✏(x) + P (x)

⇤
dµu

µ(x) + u⌫(x)dµ⌧
µ⌫(x) = 0.

In the latter equation, one can substitute the rightmost term by

u⌫(x)dµ⌧
µ⌫(x) = dµ

⇥
u⌫(x)⌧

µ⌫(x)
⇤
� ⌧µ⌫(x) dµu⌫(x) = �dµq

µ(x)� ⌧µ⌫(x)dµu⌫(x),

where the second equality follows from conditions (X.39b) and (X.39c), which altogether yield
u⌫(x)⌧µ⌫(x) = �qµ(x). One thus obtains

uµ(x)dµ✏(x) +
⇥
✏(x) + P (x)

⇤
dµu

µ(x) + dµq
µ(x) + ⌧µ⌫(x)dµ(x)u⌫(x) = 0. (X.46c)

Equations (X.46a)–(X.46c) represent the relations governing the dynamics of a dissipative fluid in
an arbitrary frame.

Remarks:

⇤ The last term on the left hand side of Eq. (X.46c) can be further transformed. First, invoking
identity (X.45c) and again uµ(x)⌧µ⌫(x) = �q⌫(x), one finds

⌧µ⌫(x)dµu⌫(x) = q⌫(x)u⇢(x)d⇢u⌫(x) + ⌧µ⌫(x)rµ(x)u⌫(x).

Then the terms uµ(x)q⌫(x) and u⌫(x)qµ(x) in ⌧µ⌫(x) do not contribute to the rightmost term: the
former, because the “spatial gradient” rrr(x) is orthogonal to the four-velocity; the latter, because
u⌫(x)rµ(x)u⌫(x) =

1
2rµ(x)

⇥
u⌫(x)u⌫(x)

⇤
is the derivative of a constant. All in all, one has

⌧µ⌫(x) dµu⌫(x) = q⌫(x)u⇢(x)d⇢u⌫(x) +$µ⌫(x)rµ(x)u⌫(x). (X.47)

⇤ From the general equations of motion (X.46) one can deduce the simpler forms they take when
adopting Eckart’s or Landau’s choice of four-velocity. With Eckart’s definition, the third term
d · ⌫a(x) in Eq. (X.46a) drops out for the charge current used to define u(x), since ⌫a(x) = 0.

In turn, when using Landau’s definition,(67) the heat 4-current q(x) vanishes while ⌧(x) reduces to
$(x), which leads to simplifications in Eqs. (X.46b) and (X.46c).

:::::::::::::::::::::::::::::::::::::::::::::
Entropy law in a dissipative relativistic fluid

Inserting the thermodynamic relation ✏+P = Ts+
P

µana into the dynamical equation (X.46c)
and using d✏ = T ds+

P
µa dna, one finds

T (x)dµ
⇥
s(x)uµ(x)

⇤
+

X
µadµ

⇥
na(x)u

µ(x)
⇤
+ dµq

µ(x) + ⌧µ⌫(x)dµu⌫(x) = 0.

The second term can be transformed with the help of the charge-conservation equation (X.46a):
Invoking in addition relation (X.47) for the fourth term yields

T (x)dµ
⇥
s(x)uµ(x)

⇤
=

X
µa(x)dµ⌫

µ

a (x)� dµq
µ(x)�$µ⌫(x)rµ(x)u⌫(x)� q⌫(x)u⇢(x)d⇢u⌫(x).

Next we can add two terms inside the square brackets on the left hand side, which partly cancel
(67)This choice of form for u(x) is often announced as “let us work in the Landau frame”, which means that the local

rest frame at each point of the fluid is the Landau frame.
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the first two terms in the right member:

T (x)dµ


s(x)uµ(x)�

X µa(x)

T (x)
⌫µa (x) +

qµ(x)

T (x)

�
=�T (x)

X
⌫µa (x)dµ


µa(x)

T (x)

�
�

qµ(x)

T (x)
dµT (x)

�$µ⌫(x)rµ(x)u⌫(x)� q⌫(x)u⇢(x)d⇢u⌫(x). (X.48)

The first two terms on the right hand side can be further transformed: since the dissipative four-
currents ⌫a(x) and q(x) are orthogonal to the four-velocity, one has the identities ⌫µadµ = ⌫µarµ and
qµdµ = qµrµ. Then, since the viscous tensor $$$ is symmetric, one has

$µ⌫(x)rµ(x)u⌫(x) =
1

2
$µ⌫(x)

⇥
rµ(x)u⌫(x) +r⌫(x)uµ(x)

⇤
.

Using now the decomposition $µ⌫(x) = ⇡µ⌫(x) +⇧(x)�µ⌫(x) [Eq. (X.39d)] and

1

2

�
rµu⌫ +r⌫uµ

�
=

1

2


rµu⌫ +r⌫uµ �

2

3
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+

1

3
�µ⌫
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�
⌘ SSSµ⌫ +

1

3
�µ⌫

�
rrr · u

�
,

where the SSSµ⌫ are the components of a traceless tensor(68)—comparing with Eq. (II.17d), this is the
rate-of-shear tensor—, while rrr · u is the (spatial) 3-divergence of the 4-velocity field, one finds that
Eq. (X.48) becomes

dµS
µ(x) = �

⇡µ⌫(x)

T (x)
SSSµ⌫(x)�

⇧(x)

T (x)
rµ(x)u

µ(x)�
X

⌫µa (x)rµ


µa(x)

T (x)

�

� qµ(x)


rµ(x)T (x)

T (x)2
+ u⇢(x)d⇢uµ(x)

�
. (X.49a)

where we have introduced the definition

Sµ(x) ⌘ s(x)uµ(x)�
X µa(x)

T (x)
⌫µa (x) +

qµ(x)

T (x)
. (X.49b)

These are the components of an entropy 4-current S(x), comprising on the one hand the convective
transport of “thermodynamic” entropy—which is the only contribution present in the perfect-fluid
case, see Eq. (X.22)—, and on the other hand contributions from the diffusive currents ⌫a(x) and
q(x). The term on the left hand side of Eq. (X.49a) is the 4-divergence of this current, and thus
describes its local change.

Let ⌦ be the 4-volume that represents the space-time trajectory of the fluid between an initial
and a final times. Integrating Eq. (X.49b) over ⌦ while using the same reasoning as in § X.1.1 b,
one sees that the left member will yield the change in the total entropy of the fluid between these
two times. This entropy variation must be positive to ensure that the second law of thermody-
namics holds. Accordingly, one requests that the integrand should be positive: dµSµ(x) � 0. This
requirement can be used to build models for the dissipative currents.

Remark: Equation (X.49b) is actually only correct at first order.

X.4.4 First order dissipative relativistic fluid dynamics
The decompositions (X.36), (X.40) are purely algebraic and do not imply anything regarding

the physics of the fluid. Any such assumption involves two distinct elements: an equation of state,
relating the energy density ✏ to the thermodynamic pressure P and the conserved-charge densities
na; and a set of constitutive equations that model the dissipative effects, i.e. the diffusive charge
4-currents ⌫a(x), the heat flux density q(x) and the dissipative stress tensor ⌧⌧⌧(x).
(68)In the notation introduced in the remark at the end of § X.4.1, SSSµ⌫ = rhµu⌫i.
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Several approaches are possible to construct such constitutive equations. A first one would be to
compute the conserved-charge 4-currents and energy-momentum tensor starting from an underlying
microscopic theory, in particular from a kinetic description of the fluid constituents. Alternatively,
one can work directly at the “macroscopic” level, using the various constraints applying to such
models.

A first constraint is that the tensorial structure of the various currents should be the correct
one: using as building blocks the 4-velocity u, the 4-gradients of the temperature T , the chemical
potential µ, and of u, as well as the projector ���, one writes the possible expressions of the Lorentz-
scalar ⇧, the 4-vectors ⌫a and q, and the tensor ⇡⇡⇡. Another condition is that the second law of
thermodynamics should hold, i.e. that when inserting the dissipative currents in Eq. (X.49b), one
obtains a 4-divergence of the entropy 4-current that is always positive.

Working in the Landau frame,(69) in which the heat flux density q(x) vanishes, and assuming
a single conserved charge, the simplest—but not the most general—possibility that satisfies all
constraints is to request

⇧(x) = �⇣(x)rµ(x)uµ(x) (X.50a)

for the dissipative pressure,

⇡µ⌫(x) = �⌘(x)


r

µ(x)u⌫(x) +r
⌫(x)uµ(x)�

2

3
�µ⌫(x)

⇥
r

⇢(x)u⇢(x)
⇤�

= �2⌘(x)SSSµ⌫(x) (X.50b)

for the components of the shear stress tensor, and

⌫µ(x) = �(x)


n(x)T (x)
✏(x)+P (x)

�2
r

µ(x)


µ(x)

T (x)

�
(X.50c)

for the components of the dissipative conserved-charge 4-current. ⌘, ⇣,  are three positive num-
bers which implicitly depend on the space-time position, inasmuch as they vary with temperature
and chemical potential. The first two ones are obviously the shear and bulk viscosity coefficients,
respectively, as hinted at by the similarity with the form (III.27f) of the viscous stress tensor of a
non-relativistic Newtonian fluid. Accordingly, the equation of motion (X.46b) in which the dissi-
pative stress tensor is substituted by $µ⌫ = ⇡µ⌫ + ⇧�µ⌫ with the forms (X.50a), (X.50b) yields a
relativistic version of the Navier–Stokes equation.

What is less obvious is that  in Eq. (X.50c) does correspond to the heat conductivity—which
explains why the coefficient in front of the gradient is written in a rather contrived way.

Inserting the dissipative currents (X.50) in the entropy law (X.49b), the latter becomes

d · S(x) =
⇡⇡⇡(x) :⇡⇡⇡(x)

2⌘(x)T (x)
+

⇧(x)2

⇣(x)T (x)
+


✏(x)+P (x)

n(x)T (x)

�2 ⌫(x)2

(x)T (x)
. (X.51)

Since n(x) is space-like and all three transport coefficients ⌘, ⇣,  positive, the right hand side of
this equation is positive, as it should.

The constitutive equations (X.50) only involve first order terms in the derivatives of velocity,
temperature, or chemical potential. In keeping, the theory constructed with such Ansätze is referred
to as first order dissipative fluid dynamics—which is the relativistic generalization of the set of laws
valid for Newtonian fluids.

This simple analogy with the non-relativistic case, together with the fact that only 3 transport
coefficients (for the case with a single conserved charge) are needed, makes the “traditional” for-
(69)The corresponding formulae for ⇧, ⇡µ⌫ and qµ valid in the Eckart frame, in which ⌫ vanishes, can be found e.g.

in Sec. 2.4 of Ref. [45].
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mulation of first-order dissipative relativistic fluid dynamics à la Landau presented here — or its
variant in the Eckart frame — attractive. However the approaches suffer from an issue that does
not affect the non-relativistic counterpart. Indeed, it has been shown that many solutions of the
relativistic Navier–Stokes(–Fourier) equations in the Landau–Lifshitz or Eckart formulations are
unstable against small perturbations [46]. Such disturbances will grow exponentially with time, on
a microscopic typical time scale. As a result, the velocity of given modes can quickly exceed the
speed of light, which is of course unacceptable in a relativistic theory. In addition, gradients also
grow quickly, leading to the breakdown of the small-gradient assumption that implicitly underlies
the construction of first-order dissipative fluid dynamics.

Violations of causality actually occur for short-wavelength modes, which from a physical point
of view should not be described by fluid dynamics since they involve length scales on which the
system is not “continuous”. As such, the issue is more mathematical than physical. These modes
do however play a role in numerical computations, so that there is indeed a problem when one
is not working with an analytical solution.

However, it was shown in 2019 [47] that there exist formulations of relativistic first-order dis-
sipative fluid dynamics—still based on the gradients of temperature and chemical potentials,(70) as 
well as the 4-velocity, as in the non-relativistic case—, using more general classes of reference frames, 
that are causal and stable against small linear perturbations. This finding also holds in the general-
relativistic context [48]. However, the corresponding equations involve more transport coefficients 
than the Landau or Eckart frame formulations, and the reference frames do not have as simple a 
physical interpretation.

(70)A crucial point is precisely that of the definitions of these notions.
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