
X.2 Four-velocity of a fluid flow. Local rest frame 149

X.2 Four-velocity of a fluid flow. Local rest frame
The four-velocity of a flow is a field, defined at each point x of a space-time domain D, of time-like
4-vectors u(x) with constant magnitude c, i.e. such that

[u(x)]2 = uµ(x)u
µ(x) = �c2 8x, (X.9)

with uµ(x) the (contravariant) components of u(x).
At each point x of the fluid, one can define a proper reference frame, the so-called local rest

frame,(lxxv) hereafter abbreviated as LR(x), in which the space-like Minkowski components of the
local flow 4-velocity vanish:

uµ(x)
��
LR(x)

= (c, 0, 0, 0). (X.10)

Let~v(x) denote the instantaneous velocity of (an observer at rest in) the local rest frame LR(x)
with respect to a fixed reference frame R, which hereafter will be referred to as the “laboratory
frame”. In the latter, the components of the flow four-velocity are

uµ(x)
��
R
=

 
�(x)c

�(x)~v(x)

!
, (X.11)

with �(x) = 1/
p

1�~v(x)2/c2 the corresponding Lorentz factor.

In a situation where the system is locally close to thermodynamic equilibrium, the local rest
frame represents the reference frame in which the local thermodynamic variables—charge densities
na(x) and energy density ✏(x)—are defined in their usual sense:

na(x) ⌘ a(x)
��
LR(x)

, ✏(x) ⌘ T 00(x)
��
LR(x)

. (X.12)

For the remaining local thermodynamic variables, it is assumed that they are related to na(x) and
✏(x) in the same way as when the fluid is at thermodynamic equilibrium. Thus, the pressure P (x)
is given by the mechanical equation of state

P (x)
��
LR(x)

= P (✏(x), {na(x)}); (X.13)

the temperature T (x) is given by the thermal equation of state; the entropy density s(x) is defined
by the Gibbs fundamental relation, and so on.

Remarks:

⇤ A slightly more formal approach to define the 4-velocity and the local rest frame is to turn
the reasoning round. Namely, one first introduces the latter as a reference frame LR(x) in which
“physics at point x is easy”, which in particular means that the fluid should be locally “motionless”.(64)

Introducing then an instantaneous inertial reference frame that momentarily coincides with LR(x),
one considers an observer O at rest in that inertial frame. The fluid four-velocity u(x) with respect
to the laboratory frame R is then the four-velocity of O (assumed to be pointlike) in R—defined as
the derivative of O’s space-time trajectory with respect to O’s proper time.

⇤ The relativistic energy density ✏ differs from its at first sight obvious non-relativistic counterpart,
the internal energy density e. The reason is that ✏ also contains the contribution from the mass
energy of the particles and antiparticles—mc2 per (anti)particle—, which is conventionally not taken
into account in the non-relativistic internal energy density.
(64)As we shall discuss in Ref. X.4.2, this requirement may not define a unique reference frame.
(lxxv)lokales Ruhesystem
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⇤ To distinguish between the frame-dependent quantities, like charge densities a(x) or energy
density T 00(x), and the corresponding quantities measured in the local rest frame, namely na(x) or
✏(x), the latter are referred to as comoving .

The comoving quantities can actually be computed easily within any reference frame and coor-
dinate system. Let us thus write

na(x) ⌘ a(x)
��
LR(x)

=
1

c
N0

a (x)
��
LR(x)

=
N0

a (x)u
0(x)

[u0(x)]2

����
LR(x)

=
N0

a (x)u0(x)

g00(x)[u0(x)]2

����
LR(x)

=
Nµ

a (x)uµ(x)

u⌫(x)u⌫(x)

����
LR(x)

,

where we used the fact that u0(x) = g00(x)u0(x) in the local rest frame. The rightmost term of the
above equation is the ratio of two Lorentz-invariant scalars, and thus is itself a Lorentz scalar field,
independent of the reference frame in which it is computed:

na(x) =
Nµ

a (x)uµ(x)

u⌫(x)u⌫(x)
=

Na(x) · u(x)

[u(x)]2
. (X.14)

Similarly one finds

✏(x) ⌘ T 00(x)
��
LR(x)

= c2
uµ(x)Tµ⌫(x)u⌫(x)

[u⇢(x)u⇢(x)]2

����
LR(x)

=
1

c2
uµ(x)T

µ⌫(x)u⌫(x) =
1

c2
u(x) ·TTT(x) · u(x),

(X.15)

where the normalization of the 4-velocity was used.

In the following Sections, we introduce fluid models, defined by the relations between the
conserved currents—charge 4-currents Na(x) and energy-momentum tensor TTT(x)—and the fluid 4-
velocity u(x) and comoving thermodynamic quantities.

X.3 Perfect relativistic fluid
By definition, a fluid is perfect when there is no dissipative current in it, see definition (III.16a).
As a consequence, one can at each point x of the fluid find a reference frame in which the local
properties in the neighborhood of x are spatially isotropic [cf. definition (III.24)]. This reference
frame represents the natural choice for the local rest frame at point x, LR(x).

The expressions of the particle-number 4-current and the energy-momentum tensor of a perfect
fluid are first introduced in § X.3.1. It is then shown that the postulated absence of dissipative
current automatically leads to the conservation of entropy in the motion (§ X.3.2). Eventually, the
low-velocity limit of the dynamical equations is investigated in § X.3.3.

X.3.1 Charge four-current and energy-momentum tensor of a perfect fluid
To express the defining feature of the local rest frame LR(x), namely the spatial isotropy of

the local fluid properties, it is convenient to adopt a Cartesian coordinate system for the space-like
directions in LR(x): since the fluid characteristics are the same in all spatial directions, this in
particular holds along the three mutually perpendicular axes defining Cartesian coordinates.

Adopting momentarily such a system—and accordingly Minkowski coordinates on space-time—
the local-rest-frame values of the charge flux density ~|a(x), the j-th component cT 0j(x) of the
energy flux density, and the density c�1T i0(x) of the i-th component of momentum should all
vanish. In addition, the momentum flux-density 3-tensor TTT(x) in LR(x) should be diagonal, and
even proportional to the three-dimensional identity. All in all, one thus necessarily has

N0
a (x)

��
LR(x)

= cna(x), ~|a(x)
��
LR(x)

=~0, (X.16a)

and
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T 00(x)
��
LR(x)

= ✏(x),

T ij(x)
��
LR(x)

= P (x)�ij , 8i, j = 1, 2, 3 (X.16b)

T i0(x)
��
LR(x)

= T 0j(x)
��
LR(x)

= 0, 8i, j = 1, 2, 3

where the definitions (X.12) were taken into account, while P (x) denotes the pressure. Representing
the energy-momentum tensor as a matrix in which Tµ⌫(x)

��
LR(x)

is the entry in the µ+1-th line and
⌫ + 1-th column, Eq. (X.16b) yields

Tµ⌫(x)
��
LR(x)

⇠=

0

BB@

✏(x) 0 0 0
0 P (x) 0 0
0 0 P (x) 0
0 0 0 P (x)

1

CCA . (X.16c)

Remark: The identification of the diagonal spatial components with a “pressure” term is warranted
by the physical interpretation of T ii(x). Referring to it as “the” pressure anticipates the fact that
it behaves as the thermodynamic quantity that is related to energy density and particle number by
the mechanical equation of state of the fluid.

In an arbitrary reference frame R and allowing for the possible use of curvilinear coordinates,
the components of the charge 4-currents and the energy-momentum tensor of a perfect fluid are

Nµ

a (x) = na(x)u
µ(x) (X.17a)

and

Tµ⌫(x) = P (x)gµ⌫(x) +
⇥
✏(x) + P (x)

⇤uµ(x)u⌫(x)
c2

(X.17b)

respectively, with uµ(x) the components of the fluid 4-velocity with respect to R.

Relation (X.17a) resp. (X.17b) is an identity between the components of two 4-vectors resp. two
4-tensors, which transform identically under Lorentz transformations—i.e. changes of reference
frame—and coordinate basis changes. Since the components of these 4-vectors resp. 4-tensors
are equal in a given reference frame—the local rest frame—and a given basis—that of Minkowski
coordinates—, they remain equal in any coordinate system in any reference frame. ⇤

In geometric formulation, the particle number 4-current and energy-momentum tensor respec-
tively read

Na(x) = na(x)u(x) (X.18a)

and

TTT(x) = P (x)g�1(x) +
⇥
✏(x) + P (x)

⇤u(x)⌦ u(x)

c2
. (X.18b)

The latter is very reminiscent of the 3-dimensional non-relativistic momentum flux density (III.22);
similarly, the reader may also compare their component-wise expressions (III.21b) and (X.17a).

Remarks:

⇤ The energy-momentum tensor is obviously symmetric—which is a non-trivial physical statement.
For instance, the identity T i0 = T 0i means that (1/c times) the energy flux density in direction
i equals (c times) the density of the i-th component of momentum—where one may rightly argue
that the factors of c are historical accidents in the choice of units. This is possible in a relativistic
theory only because the energy density also contains the mass energy.
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⇤ In Eq. (X.17b) or (X.18b), the sum ✏(x) + P (x) is equivalently the enthalpy density w(x).

⇤ Equation (X.17b), (X.18b) or (X.19a) below represents the most general symmetric
�
2
0

�
-tensor

that can be constructed using only the metric tensor and the 4-velocity.

The component form (X.17b) of the energy-momentum tensor can trivially be recast as

Tµ⌫(x) = ✏(x)
uµ(x)u⌫(x)

c2
+ P (x)�µ⌫(x) (X.19a)

with
�µ⌫(x) ⌘ gµ⌫(x) +

uµ(x)u⌫(x)

c2
(X.19b)

the components of a tensor ��� which—in its
�
1
1

�
-form—is actually a projector on the 3-dimensional

space orthogonal to the 4-velocity u(x), while uµ(x)u⌫(x)/c2 projects on the time-like direction of
the 4-velocity.

One easily checks the identities �µ
⌫(x)�

⌫
⇢(x) = �µ

⇢(x) and �µ
⌫(x)u

⌫(x) = 0.

From Eq. (X.19a) follows at once that the comoving pressure P (x) can be found in any reference
frame as

P (x) =
1

3
�µ⌫(x)T

µ⌫(x). (X.20)

which complements relations (X.14) and (X.15) for the charge density and energy density.

Remark: Contracting the energy-momentum tensor TTT with the metric tensor twice yields a scalar,
the so-called trace of TTT

TTT(x) : g(x) = Tµ⌫(x)gµ⌫(x) = Tµ

µ(x) = 3P (x)� ✏(x). (X.21)

X.3.2 Entropy in a perfect fluid
Let s(x) denote the (comoving) entropy density of the fluid, as defined in the local rest frame

LR(x) at point x.

:::::::
X.3.2 a

::::::::::::::::::::::
Entropy conservation

For a perfect fluid, the fundamental equations of motion (X.2) and (X.7) lead automatically to
the local conservation of entropy

dµ
⇥
s(x)uµ(x)

⇤
= 0 (X.22)

with s(x)uµ(x) the entropy four-current .

Proof: The relation U = TS�PV +
P

µaNa with U resp. µa the internal energy resp. the chem-
ical potential associated to the conserved charge of type a, gives for the local thermodynamic
densities ✏ = Ts � P +

P
µana. Inserting this expression of the energy density in Eq. (X.17b)

yields (dropping the x variable for the sake of brevity):

Tµ⌫ = Pgµ⌫ +
�
Ts+

X
µana

�uµu⌫

c2
= Pgµ⌫ +

⇥
T (suµ) +

X
µa(nau

µ)
⇤u⌫

c2
.

Letting the 4-gradient dµ act on both sides of this identity gives

dµT
µ⌫ = d⌫P +

⇥
T (suµ) +

X
µa(nau

µ)
⇤dµu⌫

c2
+
⇥
s dµT +

X
na dµµa

⇤uµu⌫

c2

+
⇥
T dµ(su

µ) +
X

µadµ(nau
µ)
⇤u⌫

c2
.

Invoking the energy-momentum conservation equation (X.7), the left member of this identity
vanishes. The second term between square brackets on the right hand side can be rewritten
with the help of the Gibbs–Duhem relation as s dµT +

P na dµµa = dµP . Eventually, the
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charge conservation equation (X.7) can be used in the rightmost term. Multiplying everything
by u⌫ and summing over ⌫ yields

0 = u⌫ d
⌫P +

⇥
T (suµ) +

X
µa(nau

µ)
⇤u⌫ dµu⌫

c2
+ (dµP )

uµu⌫u⌫

c2
+
⇥
T dµ(su

µ)
⇤u⌫u⌫

c2
.

The constant normalization u⌫u⌫ = �c2 of the 4-velocity implies u⌫ dµu⌫ = 0 for µ = 0, . . . , 3,
so that the equation becomes

0 = u⌫ d
⌫P � (dµP )uµ

� T dµ(su
µ),

leading to dµ(suµ) = 0 since the first two terms cancel each other. ⇤

:::::::
X.3.2 b

:::::::::::::::::::::::
Isentropic distribution

Let n(x) denote the (local) comoving density of one of the conserved charges. The local conser-
vation of entropy (X.22) implies the conservation of the ratio s(x)/n(x), conveniently referred to as
the entropy per particle, along the motion.

Proof: The total time derivative of the entropy per particle reads
d

dt

✓
s

n

◆
=

@

@t

✓
s

n

◆
+~v · ~r

✓
s

n

◆
=

1

�
u · d

✓
s

n

◆
,

where the second identity makes use of Eq. (X.11), with � the Lorentz factor. The rightmost
term is then

u · d

✓
s

n

◆
=

1

n u · ds�
s

n2
u · dn =

1

n

✓
u · ds�

s

n u · dn
◆
.

The continuity equation d · (nu) = 0 gives u · dn = �n d · u, implying

d

dt

✓
s

n

◆
=

1

�
u · d

✓
s

n

◆
=

1

�n
�
u · ds+ s d · u

�
=

1

�n d · (su) = 0,

where the last identity expresses the conservation of entropy (X.22). ⇤

X.3.3 Non-relativistic limit
We shall now consider the low-velocity limit |~v| ⌧ c of the relativistic equations of motion (X.2)

and (X.7), in the case when the conserved currents are those of perfect fluids, namely given by
constitutive relations (X.17a) and (X.17b). Anticipating on the result, we shall recover the equa-
tions governing the dynamics of non-relativistic perfect fluids presented in Chapter III, as could be
expected for the sake of consistency.

In the small-velocity limit, the typical velocity of the “atoms” forming the fluid is also much
smaller than the speed of light, which has two consequences. On the one hand, the available
energies are too low to allow the creation of particle–antiparticle pairs—while their annihilation
remains possible—, so that the fluid consists of either particles or antiparticles. Assuming that
there is a single type of particles in the fluid, the various charges labeled by the index a are all
redundant, and the charge density na(x), which is proportional to the difference of the amounts
of particles and antiparticles in a unit volume, actually coincides with the “true” particle number
density, which will be more shortly denoted n(x).

On the other hand, the relativistic energy density ✏ can now be expressed as the sum of the
contribution from the masses of the particles and of a kinetic energy term. By definition, the latter
is the local internal energy density e(x) of the fluid, while the former is simply the number density
of particles multiplied by their mass energy:

✏(x) = n(x)mc2 + e(x) = ⇢(x)c2 + e(x), (X.23)

with ⇢(x) the mass density of the fluid constituents. It is important to note that the internal energy
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