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VII.1 Gravitational instability in a perfect fluid at rest

VII.1.1 Sound waves in a fluid in a uniform gravity field
Consider a perfect fluid in a constant and uniform gravity field ~g, which defines the z direction:

~g = �g~ez. As seen in § IV.1.2, in a domain over which the fluid mass density is assumed to be
constant the Euler equation

⇢(t,~r)

⇢
@~v(t,~r)

@t
+
⇥
~v(t,~r) · ~r

⇤
~v(t,~r)

�
= �~rP (t,~r) + ⇢(t,~r)~g (VII.1)

and the continuity equation admit the static solution involving Pascal’s law (IV.4)

⇢(t,~r) = ⇢0 , P 0(t,~r) = P (0)
� ⇢0gz , ~v0(t,~r) =~0 (VII.2)

with P (0) the pressure at some reference altitude z = 0.
Let us consider a small adiabatic perturbation [cf. Eq. (VI.1)] of that reference state:

⇢(t,~r) = ⇢0 + �⇢(t,~r) (VII.3a)

P (t,~r) = P 0(t,~r) + �P (t,~r) = P (0)
� ⇢0gz + �P (t,~r) (VII.3b)

~v(t,~r) =~v0(t,~r) + �~v(t,~r) = �~v(t,~r) (VII.3c)

Inserting these fields into the continuity equation and Euler equation (VII.1) yields dynamical
equations for the perturbations �⇢, �P , �~v. Linearizing these equations in the perturbations, one
obtains

@�⇢(t,~r)

@t
+ ⇢0~r · �~v(t,~r) = 0 (VII.4a)

as in Eq. (VI.4a) and

⇢0
@�~v(t,~r)

@t
= ~r�P (t,~r)� �⇢(t,~r)~g. (VII.4b)

Using the adiabaticity condition as in § VI.1.1, the small variations of pressure and mass density
are related via the speed of sound (VI.5) (estimated at ⇢0):
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�P (t,~r) = c2s�⇢(t,~r). (VII.4c)

Combining the time derivative of Eq. (VII.4a) and the divergence of Eq. (VII.4b) under consid-
eration of relation (VII.4c), one finds

@2�⇢(t,~r)

@t
� c2s4�⇢(t,~r) + ~g · ~r�⇢(t,~r) = 0. (VII.5)

This is a linear partial differential equation, which reduces to the classical wave equation in the
absence of gravitational field.

Inserting in this evolution equation the Fourier ansatz

�⇢(t,~r) = e�⇢(!,~k) ei(~k·~r�!t) (VII.6)

leads at once to the dispersion relation

!2 = c2s~k
2 + i~g · ~k (VII.7)

for small perturbations. Effect of gravitation (i~g · ~k) only when wave vector ~k has a component
along the direction or ~g.

Sound waves in air on Earth: cs ⇡ 340 m · s�1, g ⇡ 9.8 m · s�2. The second term on the right
hand side of Eq. (VII.7) becomes comparable in absolute value to the first one when |~k| . 10�4 m�1.
This corresponds to wavelengths of order 10 km or higher, i.e. to frequencies below 1 Hz. Effect of
gravity on usual sound waves is thus negligible.

The discussion should be further expanded.

VII.1.2 Sound wave in a self-gravitating gas
Instead of the setup of the previous paragraph, in which the fluid is in an external gravity field,

let us now consider the case of an isolated perfect fluid, whose mass distribution creates a Newtonian
gravitational potential � according to the Poisson equation

4�(t,~r) = 4⇡GN ⇢(t,~r) (VII.8)

with Newton’s gravitational constant GN ' 6.67 ⇥ 10�11 m3 kg�1 s�2. The paramount example is
that of an interstellar cloud, consisting mostly of hydrogen.

While Eq. (VII.8) describes the influence of mass density on the gravitational potential, they
are further coupled together by the Euler equation

⇢(t,~r)

⇢
@~v(t,~r)

@t
+
⇥
~v(t,~r) · ~r

⇤
~v(t,~r)

�
= �~rP (t,~r)� ⇢(t,~r)~r�(t,~r). (VII.9)

In addition, mass density and velocity field obey the continuity equation. One could invoke a fourth
equation, namely an equation of state, to relate the pressure to the mass density, but this will not
be needed afterwards.

Instead, assume(43) that we take as starting point the stationary and uniform reference state

⇢0(t,~r) = ⇢0 , P 0(t,~r) = P 0 , ~v0(t,~r) =~0 , �0(t,~r) = �0. (VII.10)

As in § VII.1.1, we consider small adiabatic perturbations of the fields:

⇢(t,~r) = ⇢0 + �⇢(t,~r) (VII.11a)
P (t,~r) = P 0(t,~r) + �P (t,~r) (VII.11b)
~v(t,~r) = �~v(t,~r) (VII.11c)
�(t,~r) = �0 + ��(t,~r) (VII.11d)

(43)... following Jeans’ historical swindle! This assumption is not a valid solution of the equations, unless ⇢0 = 0.
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with in addition
�P (t,~r) = c2s�⇢(t,~r). (VII.12)

Invoking the continuity and Euler equation and the Poisson equation (VII.8), the perturbations
satisfy the coupled partial differential equations

@�⇢(t,~r)

@t
+ ~r ·

⇣⇥
⇢0 + �⇢(t,~r)

⇤
�~v(t,~r)

⌘
= 0 (VII.13a)

⇥
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⇤⇢@�~v(t,~r)

@t
+
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⇤
�~v(t,~r)

�
= �~r�P (t,~r)�

⇥
⇢0+ �⇢(t,~r)

⇤
~r��(t,~r) (VII.13b)

and
4��(t,~r) = 4⇡GN �⇢(t,~r). (VII.13c)

For small perturbations, we can linearize these equations, which thus simplify to the system
@�⇢(t,~r)

@t
+ ⇢0~r · �~v(t,~r) = 0 (VII.14a)

⇢0
@�~v(t,~r)

@t
= �~r�P (t,~r)� ⇢0~r��(t,~r) (VII.14b)

4��(t,~r) = 4⇡GN �⇢(t,~r). (VII.14c)

Combining the divergence of the linearized Euler equation (VII.14b), using Eq. (VII.14c) for
the rightmost term, and the time derivative of Eq. (VII.14a), one obtains the partial differential
equation

@2�⇢(t,~r)

@t
� c2s4�⇢(t,~r)� 4⇡GN⇢0 �⇢(t,~r) = 0 (VII.15)

governing the evolution of the perturbation �⇢(t,~r). The Fourier ansatz �⇢(t,~r) = e�⇢(!,~k) ei(~k·~r�!t)

leads to the dispersion relation

!2 = c2s~k
2
� 4⇡GN⇢0 = c2s

�
k2 � k2J

�
(VII.16)

between the angular frequency ! and the wave vector ~k, where in the second identity we have
denoted k ⌘ |~k| and introduced the wave number

kJ ⌘

p
4⇡GN⇢0
cs

. (VII.17)

According to this dispersion relation, (linear) perturbations with wave number k > kJ propagate
with the phase velocity

c' =
!

k
= cs

q
1� k2J/k

2, (VII.18)

close to cs for very small wavelengths � = 2⇡/k and vanishing for k = kJ.
On the other hand, in the case of perturbations with a wavelength larger than the Jeans(aq) length

�J ⌘ 2⇡/kJ, the dispersion relation (VII.16) yields two modes with purely imaginary (angular)
frequencies

!±(k) = ±ics

q
k2J � k2, (VII.19)

which do not propagate since the real part of ! vanishes. While the amplitude of the mode with
! = !� decreases exponentially, that of the mode with ! = !+ will increase.(44) Since there is no
physical argument to discard these wildly growing modes, their existence signals the instability of
the reference state (VII.10) with respect to large-wavelength perturbations.

For air (⇢0 ' 1.3 kg ·m�3) at 300 K, resulting in a speed of sound cs ' 350 m · s�1, the Jeans
length is of order 6.7 ⇥ 104 km, three orders of magnitude larger than the thickness of the Earth
atmosphere — in which perturbations are thus stable.
(44)At least, within the limit of validity of the linear analysis performed here.
(aq)J. Jeans, 1877–1946
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