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An exact solution of the system of equations exists, yes it is neither enlightening mathematically,
nor relevant from the physical point of view in the general case, as discussed in the next remark.

One may naturally also analyze the general case in which both ! and k are complex numbers. In
any case, the phase velocity is given by c' ⌘ !/kr, although it is more difficult to recognize the
physical content of the mathematical relations.

⇤ For air or water, the reduced kinetic viscosity ⌫̄ is of order 10�6–10�5 m2
· s�1. With speeds of

sound cs ' 300–1500 m · s�1, this yields typical time scales ⌧⌫ of order 10�12–10�10 s. That is, the
change in the speed of sound (VI.21), or equivalently deviations from the assumption !⌧⌫ ⌧ 1 under-
lying the attenuation coefficient (VI.22), become relevant for sound waves in the gigahertz/terahertz
regime(!). This explains why measuring the bulk viscosity is a non-trivial task.

The wavelengths cs⌧⌫ corresponding to the above frequencies ⌧�1
⌫ are of order 10�9–10�7 m.

This is actually not far from the value of the mean free path in classical fluids, so that the whole
description as a continuous medium starts being questionable.

VI.2 Shock waves
When the amplitude of the perturbations considered in Sec. VI.1 cannot be viewed as small, as for
instance if |�~v| ⌧ cs does not hold, the linearization of the equations of motion (VI.3) is no longer
licit, and the nonlinear terms of the Euler equation play a role.

A possibility is then that at a finite time t in the evolution of the fluid, a discontinuity in some
of the fields may appear, referred to as shock wave.(lvii) How this may arise will be discussed in
the case of a one-dimensional problem (§ VI.2.1). At a discontinuity, the differential formulation of
the conservation laws derived in Chap. III no longer holds, and it becomes necessary to study the
conservation of mass, momentum and energy across the surface of discontinuity associated with the
shock wave (§ VI.2.2).

VI.2.1 Formation of a shock wave in a one-dimensional flow
As in § VI.1.1, we consider the propagation of an adiabatic perturbation of a background fluid

at rest, in the absence of gravity or of other external volume forces. In the one-dimensional case,
the dynamical equations (VI.3) read
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The variation of the pressure �P (t, x) can again be expressed in terms of the variation in the mass
density �⇢(t, x) by invoking a Taylor expansion [cf. the paragraph between Eqs. (VI.4) and (VI.5)].
Since the perturbation of the background “flow” is no longer small, the thermodynamic state around
which this Taylor expansion is performed is not necessarily that corresponding to the unperturbed
fluid, but rather an arbitrary state, so that

�P (t, x) ' cs
�
⇢(t, x)

�2
�⇢(t, x), (VI.24)

where the speed of sound is that in the perturbed flow. When differentiating this identity, the
derivative of �⇢(t, x) with respect to x is also the derivative of ⇢(t, x), since the unperturbed fluid
state is uniform. Accordingly, one may recast Eqs. (VI.23) as

@⇢(t, x)

@t
+ ⇢(t, x)

@�v(t, x)

@x
+ �v(t, x)

@⇢(t, x)

@x
= 0, (VI.25a)

(lvii)Stoßwelle
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which constitutes a system of two coupled partial differential equations for the two unknown fields
⇢(t, x) and �v(t, x) = v(t, x).

To deal with these equations, one may assume that the mass density and the flow velocity
have parallel dependences on time and space—as suggested by the fact that this property holds
in the linearized case of sound waves, in which both ⇢(t,~r) and ~v(t,~r) propagate with the same
phase (cs|~k|t + ~k ·~r). Thus, the dependence of v on t and x is replaced with a functional depen-
dence v

�
⇢(t, x)

�
, with the known value v(⇢0) = 0 corresponding to the unperturbed fluid at rest.

Accordingly, the partial derivatives of the flow velocity with respect to t resp. x become
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The latter identities may then be inserted in Eqs. (VI.25). If one further multiplies Eq. (VI.25a) by
⇢(t, x) dv(⇢)/d⇢ and then subtracts Eq. (VI.25b) from the result, there comes
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that is, discarding the trivial solution of a uniform mass density,
dv(⇢)
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⇢
. (VI.26)

The equations (VI.25)-(VI.26) are invariant under the simultaneous changes v ! �v, x ! �x,
and cs ! �cs. Accordingly, one may restrict the discussion of Eq. (VI.26) to the case with a +
sign—the � case amounts to considering a wave propagating in the opposite direction with the
opposite velocity. The flow velocity is then formally given by
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where we used v(⇢0) = 0, while Eq. (VI.25b) can be rewritten as
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Assuming that the mass density perturbation locally propagates as a traveling wave, i.e. making
the ansatz(37) �⇢(t, x) / f(x � cwt) in Eq. (VI.27), then its phase velocity cw will be given by
cw = cs(⇢) + v. Invoking Eq. (VI.26) then shows that dv(⇢)/d⇢ > 0, so that cw grows with
increasing mass density: the denser regions in the fluid will propagate faster than the rarefied
ones and possibly catch up with them—in case the latter where “in front” of the propagating
perturbation—as illustrated in Fig. VI.1. In particular, there may arise after a finite amount of
time a discontinuity of the function ⇢(t, x) at a given point x0. The (propagating) point where this
discontinuity takes place represents the front of a shock wave.

VI.2.2 Jump equations at a surface of discontinuity
To characterize the properties of a flow in the region of a shock wave, one needs first to specify

the behavior of the physical quantities of relevance at the discontinuity, which is the object of this
section. Generalizing the finding of the previous section in a one-dimensional setup, in which the
discontinuity arises at a single (traveling) point, in the three-dimensional case there will be a whole
surface of discontinuity ,(lviii) that propagates in the unperturbed background fluid.
(37)This form is to be seen as the local form of the solution, not as a globally valid solution.
(lviii)Unstetigkeitsfläche
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Figure VI.1 – Schematic representation of the evolution in time of the spatial distribution
of dense and rarefied regions leading to a shock wave.

For the sake of brevity, the dependence on t and ~r of the various fields of interest will be omitted.

To describe the physics at the front of the shock wave, we adopt a comoving reference frame R,
which moves with the surface of discontinuity, and in this reference frame we consider a system of
Cartesian coordinates (x1, x2, x3) with the basis vector ~e1 perpendicular to the propagating surface.
The region in front resp. behind the surface will be denoted by (+) resp. (�); that is, the fluid in
which the shock waves propagates flows from the (+)- into the (�)-region: the former is upstream,
the latter downstream.

The jump of a local physical quantity g(~r) across the surface of discontinuity is defined as
⇥⇥

g
⇤⇤
⌘ g+� g�, (VI.28)

where g+ resp. g� denotes the limiting value of g as x1 ! 0+ resp. x1 ! 0�. In case such a
local quantity is actually continuous at the surface of discontinuity, then its jump across the surface
vanishes.

At a surface of discontinuity Sd, the flux densities of mass, momentum, and energy across the
surface, i.e. along the x1-direction, must be continuous, so that mass, momentum, and energy remain
locally conserved. These requirements are expressed by the jump equations(lix)
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= 0 8i = 1, 2, 3, (VI.29b)

✓
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◆
v1
��
= 0, (VI.29c)

where the momentum flux density tensor has components TTTij = P gij + ⇢ vi vj [see Eq. (III.21b)],
with gij = �ij in the case of Cartesian coordinates.
(lix)Sprunggleichungen
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The continuity of the mass flux density across the surface of discontinuity (VI.29a) can be recast
as

(⇢v1)�= (⇢v1)+ ⌘ j1. (VI.30)

A first, trivial solution arises if there is no flow of matter across the surface of discontinuity Sd, i.e.
if (v1)+ = (v1)� = 0. In that case, Eq. (VI.29c) is automatically satisfied. Condition (VI.29b) for
i = 1 becomes

⇥⇥
P
⇤⇤
= 0, i.e. the pressure is the same on both sides of Sd. Eventually, Eq. (VI.29b)

with i = 2 or 3 holds automatically. All in all, there is no condition on the behavior of ⇢, v2 or v3

across the surface of discontinuity—which means that these quantities may be continuous or not,
in the latter case with an arbitrary jump.

If j1 does not vanish, that is if some matter flows across Sd, then the jump equation for the
component TTT21 = ⇢v2v1 resp. TTT31 = ⇢v3v1 leads to
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In turn, rewriting the jump equation for TTT11 = P + ⇢(v1)2 with the help of j1 yields
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Thus if ⇢+< ⇢�, i.e. if the fluid is denser in the (�)-region downstream—as suggested by Fig. VI.1—,
then P�> P+, while relation (VI.30) yields (v1)+> (v1)�:(38)

⇢�> ⇢+ , P�> P+ , (v1)+> (v1)�. (VI.33)

By invoking the necessary non-decrease of entropy, one can show (see Ref. [4], § 87) that these
inequalities indeed hold.

Combining Eqs. (VI.30) and (VI.32) yields

⇥
(v1)+

⇤2
=

j21
⇢2+

=
P�� P+

⇢�� ⇢+

⇢�⇢+
⇢2+

=
P�� P+

⇢�� ⇢+

⇢�
⇢+

and similarly
⇥
(v1)�

⇤2
=

P�� P+

⇢�� ⇢+

⇢+
⇢�

.

If the jumps in pressure and mass density are small, one can show that their ratio is approximately
the derivative @P/@⇢, here at constant entropy and particle number, evaluated in the vicinity of
the point where the jump occurs, i.e.
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With ⇢�> ⇢+ comes (v1)+> cs resp. (v1)�< cs upstream resp. downstream of the shock front.(39)

The former identity means that an observer comoving with the surface of discontinuity sees in front
of her/him a fluid flowing with a supersonic velocity, that is, going temporarily back to a reference
frame bound to the unperturbed fluid, the shock wave moves with a supersonic velocity.

(38)Conversely, ⇢+> ⇢� would lead to P�< P+ and (v1)+< (v1)�.
(39)Here we are being a little sloppy: one should consider the right (x1 ! 0+) and left (x1 ! 0�) derivatives,

corresponding respectively to the (+) and (�)-regions, and thus find the associated speeds of sound (cs)+ and
(cs)� instead of a single cs.



104 Waves in non-relativistic fluids

Invoking the continuity across Sd of the product ⇢ v1 and of the components v2, v3 parallel to
the surface of discontinuity, the jump equation (VI.29c) for the energy flux density simplifies to
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Expressing j21 with the help of Eq. (VI.32), one finds
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with w = e+ P the enthalpy density, or equivalently
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Either of these equations represents a relation between the thermodynamic quantities on both sides
of the surface of discontinuity, and defines in the space of the thermodynamic states of the fluid
a so-called shock adiabatic curve, also referred to as dynamical adiabatic curve(lx) or Hugoniot(al)

adiabatic curve, or Rankine(am)–Hugoniot relation.

More generally, Eqs. (VI.30)–(VI.34) relate the dynamical fields on both sides of the surface of
discontinuity associated with a shock wave, and constitute the practical realization of the continuity
conditions encoded in the jump equations (VI.29).

VI.3 Gravity waves
In this section, we investigate waves that are “driven” by gravity, in the sense that the latter is the
main force that acts to bring back the perturbed fluid to its unperturbed, “background” state. Such
perturbations are generically referred to as gravity waves.(lxi)

A first example is that of small perturbations at the free surface of a liquid originally at rest—the
“waves” of everyday language. In that case, some external source, as e.g. wind or an earthquake,
leads to a local rise of the fluid above its equilibrium level: gravity then acts against this rise
and tends to bring back the liquid to its equilibrium position. In case the elevation caused by
the perturbation is small compared to the sea depth, as well as in comparison to the perturbation
wavelength, one has linear sea surface waves (§ VI.3.1). Another interesting case arises in shallow
water, for perturbations whose horizontal extent is much larger than their vertical size, in which
case one may find so-called solitary waves (§ VI.3.2).

Throughout this section, the flows—comprised of a background fluid at rest and the traveling
perturbation—are supposed to be two-dimensional, with the x-direction along the propagation
direction and the z-direction along the vertical, oriented upwards so that the acceleration due to
gravity is ~g = �g~ez. The origin z = 0 is taken at the bottom of the sea / ocean, which for the sake
of simplicity is assumed to be flat.

VI.3.1 Linear sea surface waves
A surface wave is a perturbation of the altitude—with respect to the sea bottom—of the free

surface of the sea. The latter is displaced by an amount �h(t, x) from its equilibrium position h0,
corresponding to a fluid at rest with a horizontal free surface. These variations in the position of
(lx)dynamische Adiabate (lxi)Schwerewellen
(al)P. H. Hugoniot, 1851–1887 (am)W. J. M. Rankine, 1820–1872
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