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The purpose of this appendix is to introduce the so-called ⇡-theorem, according to which a
relation of the form

G = f(G1,G2, . . . ,Gn) (C.1)

between the mathematical representations G, G1, G2, . . . , Gn of physical quantities can generically
be simplified.

C.1 Buckingham ⇡-theorem

C.1.1 Physical dimensions and dimensionally independent quantities
Before stating the theorem, we introduce a few definitions and notions.
As the reader most probably knows, physical quantities implicitly carry a (physical) dimension,

which in particular dictates which units can be used to measure them. Given a quantity G, the
associated dimension is generally denoted [G].(35)

These physical dimensions can all be expressed as products of monomials of a handful of base
quantities, namely length (symbol: L), mass (M), time (T), electric current (I), (thermodynamic)
temperature (⇥), amount of substance (N), and luminous intensity (J). In fluid dynamics—and as
long as one only considers uncharged fluids—, only the q = 4 quantities L, M, T and ⇥ are relevant,
which is what we shall from now on assume.(36) For an arbitrary physical quantity G, one may thus
write

[G] = L↵M� T� ⇥� (C.2)
with rational coefficients ↵, �, �, �. In addition, quantities without physical dimension—such as
pure numbers—are assigned the dimension 1.

A set of physical quantities G1, G2, . . . , Gn are said to be dimensionally independent when the
product [G1]�1 [G2]�2 · · · [Gn]�n is dimensionless if and only if every exponent �i vanishes:

[G1]
�1 [G2]

�2 · · · [Gn]
�n = 1 , �1 = �2 = · · · = �n = 0. (C.3)

(35)Note that we refer to G as the “physical quantity”, while it should rather be called “mathematical representation
of the physical quantity”.

(36)The reader will be able to generalize the argumentation to q 6= 4 by herself/himself.
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By definition, the base quantities are dimensionally independent of each other.
Introducing the dimensional exponents ↵i, �i, �i, �i for each quantity Gi:

[Gi] = L↵i M�i T�i ⇥�i , (C.4)

one defines the dimension matrix associated with the set {Gi}i=1,...,n as the q ⇥ n matrix
0

BB@

↵1 ↵2 · · · ↵n

�1 �2 · · · �n
�1 �2 · · · �n
�1 �2 · · · �n

1

CCA . (C.5)

One easily finds that n physical quantities G1, G2, . . . , Gn are dimensionally independent if and only
if the rank r of the corresponding dimension matrix equals n—which obviously implies n  q.

Proof: The logarithm of the relation [G1]�1 [G2]�2 · · · [Gn]�n = 1 reads, at least symbolically(37)

�1 ln[G1] + �2 ln[G2] + · · ·+ �n ln[Gn] = 0.

Replacing each physical dimension [Gi] by its expression (C.4) in terms of the basis quantities,
one obtains the linear system

8
>>><

>>>:

↵1�1 + · · ·+ ↵n�n = 0

�1�1 + · · ·+ �n�n = 0

�1�1 + · · ·+ �n�n = 0

�1�1 + · · ·+ �n�n = 0,

(C.6)

which can be recast in a matrix form involving the dimension matrix (C.5). Using basic results
from linear algebra, the vector space spanned by the vectors (�1, . . . ,�n)T that satisfy the system
is of dimension n� r, i.e. that space reduces to the zero vector iff n = r. ⇤

If the rank r of the dimension matrix (C.5) is smaller than n, then the physical quantities G1,
G2, . . . , Gn are not dimensionally independent, i.e. some of them can be expressed (“derived”) in
terms of the others.

Indeed, in that case, the linear system (C.6) is underdetermined. Given r independent coeffi-
cients among the {�i}i=1,...,n, which up to relabeling can be chosen to be �1, . . . , �r, then the n� r
other coefficients �r+1, . . . , �n are linear combinations of the independent ones. Coming back to
the physical quantities, {G1, . . . ,Gr} form a “complete” set of dimensionally independent quantities,
in terms of which the dimension of every quantity Gk with k 2 {r + 1, . . . , n} can be expressed:
there exist (rational) coefficients ak,1, . . . ak,r such that

[Gk] = [G1]
ak,1 · · · [Gr]

ak,r for k 2 {r + 1, . . . , n}. (C.7)

Stated differently, the coefficients are such that the ratio

⇡k�r ⌘
Gk

G
ak,1

1 · · · G
ak,r
r

for k 2 {r + 1, . . . , n} (C.8)

is dimensionless: [⇡k] = 1.

C.1.2 ⇡-theorem
Let us come back to relation (C.1), with f some function. We assume that the n quantities

G1, G2, . . . , Gn are physically independent , i.e. that the values they take can a priori be varied
independently from each other. Denoting by r the rank of the dimension matrix associated with
the set {Gi}i=1,...,n, we further assume that the first r quantities G1, . . . , Gr are dimensionally
independent, while the dimensions of the remaining ones can be expressed by Eq. (C.7).

If relation (C.1) is physically meaningful, i.e. if it holds irrespective of the values (in a given sys-
tem of units) of G and the quantities G1, . . . , Gn, then necessarily G is not dimensionally independent
(37)... because taking the logarithm of a dimensionful quantity should upset you.
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from the {Gi}i=1,...,n. One can thus find rational exponents a1, . . . , ak such that

[G] = [G1]
a1 · · · [Gr]

ar (C.9)

and accordingly define a dimensionless ratio

⇡ ⌘
G

G
a1
1 · · · G

ar
r

. (C.10)

Relation (C.1) can then be rewritten as

⇡ = G
a1
1 · · · G

ar
r f

�
G1, . . . ,Gr,G

ar+1,1

1 · · · G
ar+1,r
r ⇡1, . . . ,G

an,1

1 · · · G
an,r
r ⇡n�r

�

i.e., introducing an appropriate function z, as

⇡ = z(G1, . . . ,Gr,⇡1, . . . ,⇡n�r).

Now, since ⇡ is dimensionless, it is a number, whose value cannot depend on the system of units
used to measure the dimensionful physical quantities G1, . . . , Gr. Accordingly, the function z can
actually not depend on its first r arguments, and one may replace it by a function f⇤ of the last
n� r arguments only and write

⇡ = f⇤(⇡1, . . . ,⇡n�r). (C.11)

We have thus derived the Buckingham ⇡ theorem:
Any physically meaningful relation between n+1 dimensionful physical quantities G, G1, . . . , Gn

of the form G = f(G1,G2, . . . ,Gn) can be reduced to a relation ⇡ = f⇤(⇡1, . . . ,⇡n�r) between n+1�r
dimensionless quantities, where r is the rank of the dimension matrix associated with the physical
quantities G1, . . . , Gn.

Remarks:
⇤ The dimensionless quantities ⇡, ⇡k are sometimes referred to as Pi groups or (less obscure, but

more seldom) similitude parameters.

⇤ The ⇡ theorem gives no information on the functional form of f⇤.

C.2 Examples of application
Let us give a few examples of application of the ⇡ theorem in fluid dynamics.

C.2.1 Velocity of sea surface waves
We begin with examples corresponding to the physical situation discussed in Sec. ??. We

consider a perfect fluid — characterized by its mass density ⇢, dimension ML�3 — in a constant
gravitational field with acceleration g (dimension LT�2). In the following, we want to find of the
velocity cw of waves — either phase or group velocity, it does not matter — depends on ⇢, g, the
wave number k ([k] = L�1) and other possibly relevant dimensionful parameters of the problem.

:::::::
C.2.1 a

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Gravity-induced surface waves on an infinitely deep ocean

Since the fluid is assumed to be infinitely deep (and wide), there is no associated characteristic
length scale. Accordingly, the velocity of the gravity-induced waves may be expected to depend on
k, ⇢, g only, i.e. there exists a function f of the n = 3 quantities such that

cw = f(k, g, ⇢)

which plays the role of relation (C.1). Note that the three quantities k, ⇢, g are clearly dimensionally
independent, so that the corresponding dimension matrix has rank r = 3.

Using k, ⇢, g, the only combination with the dimension LT�1 of a velocity is
p
g/k. The

dimensionless “similitude parameter” associated with cw [Eq. (C.10)] is thus ⇡ = cw/
p
g/k.
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Turning now to Eq. (C.11), we find that since here n = r the relation formally reads
cwp
g/k

= f⇤() = constant, (C.12a)

where f⇤() designates a “function without argument”. Reorganizing Eq. (C.12a) yields

cw /

r
g

k
(C.12b)

which is indeed correct, see Eq. (??) (the purely numerical proportionality factor is 1 for the phase
velocity, 1

2 for the group velocity).

Remark: The mass density ⇢ plays no role here, nor in the following example. This could have
been anticipated: in both cases there is no other physical quantity involved in the problem with a
non-zero dimensional exponent for M, making it impossible to construct a dimensionless quantity
involving ⇢. This ultimately reflects the fact that the waves under consideration are induced by
gravity only, so that the resulting acceleration of a fluid element is independent of its mass.

:::::::
C.2.1 b

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Gravity-induced surface waves on an ocean with finite depth

Let us now consider the case of gravity induced waves on the surface of an ocean with depth h0,
which thus adds up to the list of physical quantities on which a wave velocity can depend, and we
may write

cw = f(k, g, ⇢, h0).

Since only 3 of the n = 4 quantities are dimensionally independent — say k, g and ⇢ again —, the
similitude parameter cw/

p
g/k depends on n � r = 1 dimensionless parameter. The latter should

involve the remaining dimensionful quantity h0, and is quickly found to be kh0, leading to

cwp
g/k

= f⇤(kh0). (C.13a)

This leads to

cw /

r
g

k
f⇤(kh0). (C.13b)

One can check starting from Eq. (??) that this is again correct — with f⇤ = tanh for the phase
velocity and a slightly more complicated form for the group velocity.

:::::::
C.2.1 c

:::::::::::::::::::::::::::::::::::::::::::::
Capillary waves on an infinitely deep ocean

Let us now discuss waves that are driven not by gravity, but by the surface tension � (dimension
MT�2) at the water/air interface: � represents the energy per unit surface(38) which is necessary
to increase the size of the interface between the two fluids. When a flat ocean surface is deformed
(by the action of wind), surface tension will tend to drive it back to flatness, to minimize the size
of the interface, leading to so-called capillary waves.

In the case of an infinitely deep and wide ocean, the velocity of the capillary waves can depend
on k, g, ⇢ — which will form our “basis” of dimensionally independent quantities —, and �:

cw = f(k, g, ⇢,�).

Using the basic quantities k, g, ⇢, the unique combination with dimension MT�2 is ⇢g/k2, so that
relation (C.11) here reads

cwp
g/k

= f⇤
✓
�k2

⇢g

◆
, (C.14a)

(38)Energy has dimension [E] = ML2T�2, surface L2, leading at once to the dimension of �.
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or equivalently

cw /

r
g

k
f⇤
✓
�k2

⇢g

◆
. (C.14b)

If gravity is to play no role in the waves,(39) i.e. in the case of pure capillary waves, then g should drop
out of the relation. This is only possible if f⇤ is (proportional to) the square root of its argument,
leading to

cw /

s
�k

⇢
.

Indeed, the dispersion relation for pure capillary waves under the conditions considered here is
!2 = �k3/⇢, leading to the above form for the phase and group velocities.

Remarks:

⇤ The relative influence of gravity and surface tension on surface waves with wave vector k is
quantified by a dimensionless number, the so-called Bond(al) or Eötvös number(am) Eo

Bo = Eo ⌘
⇢g

�k2
. (C.15)

As could be expected, the argument of of the dimensionless function f⇤ is precisely (the inverse of)
this number.

⇤ Since � is related to the interface between the water and the air, we should have considered not
only the mass density ⇢ of the water, but also that of the air in the reasoning. Here we implicitly
assumed that ⇢air is negligible, which reflects ⇢air ⌧ ⇢water. For the capillary waves at the boundary
between two immiscible fluids — like water and oil — with similar mass densities, both of them
should play a role in the velocity.

C.2.2 Expansion velocity of a shock front
To be completed...

(39). . . apart from ensuring the flatness of the ocean in the absence of waves.
(al)W. N. Bond, 1897–1937 (am)L. Eötvös, 1848–1919
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