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by Hagen (1839) and Poiseuille (1840)—is thus a proof of the validity of the no-slip assumption for
the boundary condition.

⇤ The mass flow rate across the tube cross section may be used to define the average flow velocity
such that Q = ⇡a2⇢hvi with

hvi ⌘
1

⇡a2

Z
a

0
v(r) 2⇡r dr =

1

2
v(r=0).

The Hagen–Poiseuille law then expresses a proportionality between the pressure drop per unit length
and hvi in a laminar flow.

Viewing �P/L as the “generalized force” driving the motion, the corresponding “response” hvi of
the fluid is thus linear.

The relation is quite different in the case of a turbulent flow with the same geometry: for instance,
measurements by Reynolds [21] gave �P/L / hvi1.722.

V.2 Dynamic similarity
The incompressible motion of a Newtonian fluid is governed by the kinetic condition ~r ·~v(t,~r) = 0,
the continuity equation (III.9), and the incompressible Navier–Stokes equation (III.33). In order to
determine the relative influence of the various terms of the latter, it is often convenient to consider
dimensionless forms of the equation, which leads to the introduction of a variety of dimensionless
numbers.

For instance, the influence of the fluid mass density ⇢ and shear viscosity ⌘, which are uniform
throughout the fluid, on a flow in the absence of volume forces is entirely encoded in the Reynolds
number (§ V.2.1). Allowing for volume forces, either due to gravity or to inertial forces, their relative
importance is controlled by similar dimensionless parameters (§ V.2.2).

Let Lc resp. vc be a characteristic length resp. velocity scale for a given flow. Since the Navier–
Stokes equation itself does not involve any parameter with the dimension of a length or a velocity,
both scales are controlled by “geometry”, i.e. by the boundary conditions for the specific problem
under consideration. Thus, Lc may be the size (diameter, side length) of a tube in which the fluid
flows or of an obstacle around which the fluid moves. In turn, vc may be the uniform velocity far
from such an obstacle.

With the help of Lc and vc, one can rescale the physical quantities in the problem, so as to
obtain dimensionless quantities, which will hereafter be denoted with ⇤:

~r⇤ ⌘
~r

Lc

, ~v⇤ ⌘
~v

vc
, t⇤ ⌘

t

Lc/vc
, P ⇤

⌘
P � P 0

⇢v2c
, (V.10)

where P 0 is some characteristic value of the (unscaled) pressure.

V.2.1 Reynolds number
Consider first the incompressible Navier–Stokes equation in the absence of external volume

forces. Rewriting it in terms of the dimensionless variables and fields (V.10) yields
@~v⇤(t⇤,~r⇤)

@t⇤
+

⇥
~v⇤(t⇤,~r⇤) · ~r⇤⇤~v⇤(t⇤,~r⇤) = �~r⇤P ⇤(t⇤,~r⇤) +

⌘

⇢vcLc

4
⇤~v⇤(t⇤,~r⇤), (V.11)

with ~r⇤ resp. 4
⇤ the gradient resp. Laplacian with respect to the reduced position variable ~r⇤.

Besides the reduced variables and fields, this equation involves a single dimensionless parameter,
the inverse of the Reynolds number

Re ⌘
⇢vcLc

⌘
=

vcLc

⌫
. (V.12)
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This number measures the relative importance of inertia and viscous friction forces on a fluid element
or a body immersed in the moving fluid: at large resp. small Re, viscous effects are negligible resp.
predominant.

Remark: As stated above Eq. (V.10), both Lc and vc are controlled by the geometry and boundary
conditions. The Reynolds number—and every similar dimensionless we shall introduce hereafter—is
thus a characteristic of a given flow, not of the fluid.

:::::::::::::::::
Law of similitude(li)

The solutions for the dynamical fields ~v⇤, P ⇤ at fixed boundary conditions and geometry—
specified in terms of dimensionless ratios of geometrical lengths—are functions of the independent
variables t⇤, ~r⇤, and of the Reynolds number:

~v⇤(t⇤,~r⇤) =~f⇤1(t
⇤,~r⇤,Re), P ⇤(t⇤,~r⇤) = f⇤2(t

⇤,~r⇤,Re), (V.13)

with~f⇤1 resp. f⇤2 a vector resp. scalar function. The “physical” flow velocity and pressure fields are
then given by
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⇤
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These equations underlie the use of fluid dynamical simulations with experimental models at a
reduced scale, yet possessing the same (rescaled) geometry. Let Lc, vc resp. LM, vM be the charac-
teristic lengths and velocities of the real-size flow resp. of the reduced-scale experimental flow; for
simplicity, we assume that the same fluid is used in both cases. If vM/vc = Lc/LM, the Reynolds
number for the experimental model is the same as for the real-size fluid motion: both flows then
admit the same solutions~v⇤ and P ⇤, and are said to be dynamically similar .

Remark: The functional relationships between the “dependent variables”~v⇤, P ⇤ and the “independent
variables” t⇤, ~r⇤ and a dimensionless parameter (Re) represent a simple example of the more general
(Vaschy(ae)–)Buckingham(af) ⇡-theorem [22] in dimensional analysis, see Appendix C.

V.2.2 Other dimensionless numbers
If the fluid motion is likely to be influenced by gravity, the corresponding volume force density

~fV = �⇢~g (for a uniform gravity field) must be taken into account in the right member of the
incompressible Navier–Stokes equation (III.33). Accordingly, if the latter is written in dimensionless
form as in the previous paragraph, there is an additional term on the right hand side of Eq. (V.11),
proportional to 1/Fr2, with

Fr ⌘
vc

p
gLc

(V.14)

the Froude number .(ag) This dimensionless parameter measures the relative size of inertial and
gravitational effects in the flow, the latter being important when Fr is small.

In the presence of gravity, the dimensionless dynamical fields ~v⇤, P ⇤ become functions of the
reduced variables t⇤, ~r⇤ controlled by both parameters Re and Fr.

The Navier–Stokes equation (III.32) holds in an inertial frame. In a non-inertial reference frame,
there come additional terms, which may be expressed as fictive force densities on the right hand side,
and come in addition to the “physical” volume force density ~fV . In the case of a reference frame in
uniform rotation (with respect to an inertial frame) with angular velocity ~⌦0, there are thus two extra
contributions corresponding to centrifugal and Coriolis forces, namely ~fcent. = �⇢~r

⇥
�

1
2

�
~⌦0⇥~r

�2⇤

and ~fCor. = �2⇢~⌦0⇥~v, respectively.
(li)Ähnlichkeitsgesetz
(ae)A. Vaschy, 1857–1899 (af)E. Buckingham, 1867–1940 (ag)W. Froude, 1810–1879
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The relative importance of the latter in a given flow can be estimated with dimensionless num-
bers. Thus, denoting ⌦0 ⌘ |~⌦0|, the Ekman number (ah)

Ek ⌘
⌘

⇢⌦0L2
c

=
⌫

⌦0L2
c

(V.15)

measures the relative size of (shear) viscous and Coriolis forces, with the latter predominating over
the former when Ek ⌧ 1.

One may also wish to compare the influences of the convective and Coriolis terms in the Navier–
Stokes equation. This is done with the help of the Rossby number (ai)

Ro ⌘
vc

⌦0Lc

(V.16)

which is small when the effect of the Coriolis force is the dominant one.

Remark: Quite obviously, the Reynolds (V.12), Ekman (V.15), and Rossby (V.16) numbers obey
the simple identity

Ro = Re · Ek.

V.3 Flows at small Reynolds number
This Section deals with incompressible fluid motions at small Reynolds number Re ⌧ 1, i.e. flows
in the regime in which shear viscous effects predominate over those of inertia in the Navier–Stokes
equation. Such fluid motions are also referred to as Stokes flows or creeping flows.(lii)

V.3.1 Physical relevance. Equations of motion
Flows of very different nature may exhibit a small Reynolds number (V.12), because the latter

combines physical quantities whose value can vary by many orders of magnitude in Nature.(26) A
few examples of creeping flows are listed hereafter:

• The motion of fluids past microscopic bodies; the small value of the Reynolds number then
reflects the smallness of the length scale Lc; for instance:

– In water (⌘ ⇡ 10�3 Pa · s i.e. ⌫ ⇡ 10�6 m2
· s�1), a bacteria of size Lc ⇡ 5 µm “swims”

with velocity vc ⇡ 10 µm · s�1, so that Re ⇡ 5 · 10�5 for the motion of the water past the
bacteria: if the bacteria stops propelling itself, the friction exerted by the water brings
it immediately to rest.(27) Similarly, creeping flows are employed to describe the motion
of reptiles in sand—or more precisely, the flow of sand a past an undulating reptile [24].

– The motion of a fluid past a suspension of small size (Brownian) particles. This will be
studied at further length in § V.3.2.

• The slow-velocity motion of geological material: in that case, the small value of vc and the
large shear viscosity compensate the possibly large value of the typical length scale Lc.

(26)This is mostly true of the characteristic length and velocity scales and of the shear viscosity; in (non-relativistic)
fluids, the mass density is always of the same order of magnitude, up to a factor 103.

(27)A longer discussion of the motion of bacteria—from a physicist’s point of view—, together with the original
formulation of the “scallop theorem”, can be found in Ref. [23].

(lii)schleichende Strömungen
(ah)V. Ekman, 1874–1954 (ai)C.-G. Rossby, 1898–1957
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