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PO ' PA = PB. One thus finds

PI � PB = ⇢
~v2

2
,

so that a measurement of PI � PB gives an estimate of |~v|.

For instance, in air (⇢ ⇠ 1.3 kg ·m�3) a velocity of 100 m · s�1 results in a pressure difference of
6.5⇥ 103 Pa = 6.5⇥ 10�2 atm. With a height difference h of a few centimeters between O and A0,
the neglected term ⇢gh is of order 0.1–1 Pa.

Remarks:

⇤ The flow of a fluid with velocity~v around a motionless Pitot tube is equivalent to the motion of
a Pitot tube with velocity �~v in a fluid at rest. Thus Pitot tubes are used to measure the speed of
airplanes.(18)

⇤ Is the flow of air really incompressible at velocities of 100 m · s�1 or higher? Not really, since the
Mach number (II.18) becomes larger than 0.3. In practice, one thus rather uses the “compressible”
Bernoulli equation (IV.10), yet the basic principles presented above remain valid.

:::::::
IV.2.2 d

:::::::::::::::
Magnus effect

Consider an initially uniform and steady flow with velocity ~v0. One introduces in it a cylinder
that rotates about its axis with angular velocity ~!C perpendicular to the flow velocity (Fig. IV.5).

~v0
~!C

Figure IV.5 – Fluid flow around a rotating cylinder.

Intuitively, one can expect that the cylinder will drag the neighboring fluid layers along in its
rotation.(19) In that case, the fluid velocity due to that rotation will add up to resp. be subtracted
from the initial flow velocity in the lower resp. upper region close to the cylinder in Fig. IV.5.

Invoking now the Bernoulli equation—in which the height difference between both sides of the
cylinder is neglected—, the pressure will be larger above the cylinder than below it. Accordingly,
the cylinder will experience a resulting force directed downwards—more precisely, it is proportional
to~v0 ⇥ ~!C—, which constitutes the Magnus effect .(t)

IV.3 Vortex dynamics in perfect fluids
We now turn back to the case of an arbitrary flow ~v(t,~r), still in the case of a perfect fluid. The
vorticity vector field, defined as the curl of the flow velocity field, was introduced in § II.1.2, together
with the vorticity lines. Modulo a few assumptions on the fluid equation of state and the volume
forces, one can show that vorticity is “frozen” in the flow of a perfect fluid, in the sense that the
(18)When he introduced the idea in 1732, Pitot rather had the velocity of ships in his mind.
(19)Strictly speaking, this is not true in perfect fluids, only in real fluids with friction! Nevertheless, the tangential

forces due to viscosity in the latter may be small enough that the Bernoulli equation remains approximately valid,
as is assumed here.

(t)G. Magnus, 1802–1870

Nicolas Borghini
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flux of vorticity across a material surface remains constant as the latter is being transported. This
behavior will be investigated and formulated both at the integral level (§ IV.3.1) and differentially
(§ IV.3.2).

IV.3.1 Circulation of the flow velocity. Kelvin’s theorem
Definition: Let ~�(t,�) be a closed curve, parametrized by a real number � 2 [0, 1], which is being
swept along by the fluid in its motion. The integral

�~�(t) ⌘

I

~�

~v(t,~�(t,�)) · d~̀ (IV.13)

is called the circulation around the curve of the velocity field.

Remark: According to Stokes’ theorem,(20) if the area bounded by the contour ~�(t,�) is simply
connected, �~�(t) equals the surface integral—the “flux”—of the vorticity field over every surface
S~�(t) delimited by ~�:

�~�(t) =

Z

S~�

⇥
~r⇥~v(t,~r)

⇤
· d2~S =

Z

S~�

~!(t,~r) · d2~S. (IV.14)

Stated differently, the vorticity field is the flux density of the circulation of the velocity.
This relationship between circulation and vorticity will now be further exploited: we shall first

establish and formulate results at the integral level, namely for the circulation, which will then be
expressed at the differential level, i.e. in terms of the vorticity, in § IV.3.2.

Many results take a simpler form in a so-called barotropic fluid ,(xlvi) in which the pressure can
be expressed as function of only the mass density: P = P (⇢), irrespective of whether the fluid is
otherwise perfect or dissipative. An example of such a result is
Kelvin’s circulation theorem:(u)

In a perfect barotropic fluid with conservative volume forces, the circulation of
the flow velocity around a closed curve (enclosing a simply connected region)
comoving with the fluid is conserved.

(IV.15a)

Denoting by ~�(t,�) the closed contour in the theorem,

D�~�(t)

Dt
= 0. (IV.15b)

This result is also sometimes called Thomson’s theorem.

Proof: For the sake of brevity, the arguments of the fields are omitted in case it is not necessary
to specify them. Differentiating definition (IV.13) first gives

D�~�

Dt
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D

Dt

Z 1

0
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0
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Since the contour ~�(t,�) flows with the fluid,
@~�(t,�)

@t
=~v(t,~�(t,�)), which leads to

D�~�

Dt
=

Z 1

0

⇢
@~v

@�
· ~v +

@~�

@�
·


@~v

@t
+
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�
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d�.

(20)which in its classical form used here is also known as Kelvin–Stokes theorem...

(xlvi)barotropes Fluid

(u)W. Thomson, Baron Kelvin, 1824–1907
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The first term in the curly brackets is clearly the derivative with respect to � of ~v2/2, so that
its integral along a closed curve vanishes. The second term involves the material derivative of
~v, as given by the Euler equation. Using Eq. (III.19) with ~aV = �~r� leads to

D�~�

Dt
=

Z 1

0

✓
�

~rP
⇢

� ~r�

◆
·
@~�

@�
d�.

Again, the circulation of the gradient ~r� around a closed contour vanishes, leaving

D�~�(t)

Dt
= �

I

~�

~rP (t,~r)

⇢(t,~r)
· d~̀, (IV.16)

which constitutes the general case of Kelvin’s circulation theorem for perfect fluids with conser-
vative volume forces.
Transforming the contour integral with Stokes’ theorem yields the surface integral of

~r⇥

✓~rP
⇢

◆
=

~r⇥ ~rP
⇢

+
~rP ⇥ ~r⇢

⇢2
=

~rP ⇥ ~r⇢

⇢2
. (IV.17)

In a barotropic fluid, the rightmost term of this identity vanishes since ~rP and ~r⇢ are collinear,
which yields relation (IV.15). ⇤

Remark: Using relation (IV.14) and the fact that the area S~�(t) bounded by the curve ~� at time t
defines a material surface, which will be transported in the fluid motion, Kelvin’s theorem (IV.15)
can be restated as

In a perfect barotropic fluid with conservative volume forces, the flux of the
vorticity across a material surface is conserved. (IV.18)

Kelvin’s theorem leads to two trivial corollaries, namely

Helmholtz’s theorem:(v)

In the flow of a perfect barotropic fluid with conservative volume forces, the
vorticity lines and vorticity tubes move with the fluid. (IV.19)

Similar to the definition of stream tubes in § I.3.3, a vorticity tube is defined as the surface formed
by the vorticity lines tangent to a given closed geometrical curve.
In the case of vanishing vorticity ~! = ~0, one has

Lagrange’s theorem:

In a perfect barotropic fluid with conservative volume forces, if the flow is
irrotational at a given instant t, it remains irrotational at later times. (IV.20)

Kelvin’s circulation theorem (IV.15) and its corollaries imply that vorticity cannot be created
nor destroyed in the flow of a perfect barotropic fluid with conservative volume forces. However,
the more general form (IV.16) already show that in a non-barotropic fluid, there is a “source” for
vorticity, which leads to the non-conservation of the circulation of the flow velocity. Similarly, non-
conservative forces—for instance the Coriolis force in a rotating reference frame—may contribute a
non-vanishing term in Eq. (IV.16) leading to a change in the circulation. We shall see in Sec. ??
that viscous stresses also affect the transport of vorticity in a fluid.

(v)H. von Helmholtz, 1821–1894
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IV.3.2 Vorticity transport equation in perfect fluids

Consider the Euler equation (III.20), in the case of conservative volume forces, ~aV = �~r�.
Taking the rotational curl of both sides yields after some straightforward algebra

@~!(t,~r)

@t
� ~r⇥

⇥
~v(t,~r)⇥ ~!(t,~r)

⇤
= �

~rP (t,~r)⇥ ~r⇢(t,~r)

⇢(t,~r)2
. (IV.21)

This relation can be further transformed using the identity (we omit the variables)

~r⇥
�
~v ⇥ ~!

�
=

�
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�
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�
~r · ~!

�
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�
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�
~! �

�
~r ·~v

�
~!.

Since the divergence of the vorticity field ~r · ~!(t,~r) vanishes, the previous two equations yield

@~!(t,~r)

@t
+
⇥
~v(t,~r) · ~r

⇤
~!(t,~r)�

⇥
~!(t,~r) · ~r
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⇥
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⇤
~!(t,~r)�

~rP (t,~r)⇥ ~r⇢(t,~r)

⇢(t,~r)2
.

(IV.22)
While it is tempting to introduce the material derivative D~!/Dt on the left hand side of this
equation, for the first two terms, we rather define the whole left member to be a new derivative

D~v ~!(t,~r)

Dt
⌘

@~!(t,~r)

@t
+
⇥
~v(t,~r) · ~r

⇤
~!(t,~r)�

⇥
~!(t,~r) · ~r

⇤
~v(t,~r) (IV.23a)

or equivalently
D~v ~!(t,~r)

Dt
⌘

D~!(t,~r)

Dt
�
⇥
~!(t,~r) · ~r

⇤
~v(t,~r). (IV.23b)

We shall refer to D~v /Dt as the comoving time derivative, for reasons that will be explained at the
end of this Section.

Using this definition, Eq. (IV.22) reads

D~v ~!(t,~r)

Dt
= �

⇥
~r ·~v(t,~r)

⇤
~!(t,~r)�

~rP (t,~r)⇥ ~r⇢(t,~r)

⇢(t,~r)2
. (IV.24)

In the particular case of a barotropic fluid—recall that we also assumed that it is ideal and only
has conservative volume forces—this becomes

D~v ~!(t,~r)

Dt
= �

⇥
~r ·~v(t,~r)

⇤
~!(t,~r). (IV.25)

Thus, the comoving time-derivative of the vorticity is parallel to itself.
From Eq. (IV.25), one deduces at once that if ~!(t,~r) vanishes at some time t, it remains zero—

which is the differential formulation of corollary (IV.20).

Invoking the continuity equation (III.9), the volume expansion rate ~r ·~v on the right hand side
of Eq. (IV.25) can be replaced by �(1/⇢)D⇢/Dt. For scalar fields, material derivative and comoving
time-derivative coincide, which leads to the compact form

D~v

Dt


~!(t,~r)

⇢(t,~r)

�
= ~0 (IV.26)

for perfect barotropic fluids with conservative volume forces. That is, anticipating on the discussion
of the comoving time derivative hereafter, ~!/⇢ evolves in the fluid flow in the same way as the
separation between two material neighboring points: the ratio is “frozen” in the fluid evolution.

::::::::::::::::::::::::::
Comoving time derivative

To understand the meaning of the comoving time derivative D~v /Dt, let us come back to Fig. II.1
depicting the positions at successive times t and t+�t of a small material vector �~̀(t). By definition
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of the material derivative, the change in �~̀ between these two instants—as given by the trajectories
of the two material points which are at ~r resp. ~r + �~̀(t) at time t—is

�~̀(t+�t)� �~̀(t) =
D�~̀(t)

Dt
�t.

On the other hand, displacing the origin of �~̀(t+�t) to let it coincide with that of �~̀(t), one sees

x1

x2

x3

~r

�~̀(t)
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� t,~r

+ �~̀ (
t)
� �t

~v(t,~r)�t

⇥
�~̀(t)·~r

⇤
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Figure IV.6 – Positions of a material line element �~̀ at successive times t and t+ �t.

on Fig. IV.6 that this change equals
�~̀(t+�t)� �~̀(t) =

⇥
�~̀(t)·~r

⇤
~v(t,~r)�t.

Equating both results and dividing by �t, one finds
D�~̀(t)

Dt
=

⇥
�~̀(t)·~r

⇤
~v(t,~r), i.e. precisely

D~v�~̀(t)

Dt
= ~0. (IV.27)

Thus, the comoving time derivative of a material vector, which moves with the fluid, vanishes. In
turn, the comoving time derivative at a given instant t of an arbitrary vector measures its rate of
change with respect to a material vector with which it coincides at time t.

This interpretation suggests—this can be proven more rigorously—what the action of the co-
moving time derivative on a scalar field should be. In that case, D~v /Dt should coincide with
the material derivative, which already accounts for all changes—due to non-stationarity and con-
vective transport—affecting material points in their motion. This justifies a posteriori our using
D~v ⇢/Dt = D⇢/Dt above.

More generally, the comoving time derivative introduced in Eq. (IV.23a) may be rewritten as
D~v

Dt
( · ) ⌘ @

@t
( · ) + L~v( · ), (IV.28)

where L~v denotes the Lie derivative along the velocity field ~v(~r), whose action on an arbitrary
vector field ~!(~r) is precisely (time plays no role here)

L~v ~!(~r) ⌘
⇥
~v(~r) · ~r

⇤
~!(~r)�

⇥
~!(~r) · ~r

⇤
~v(~r),

while it operates on an arbitrary scalar field ⇢(~r) according to

L~v ⇢(~r) ⌘
⇥
~v(~r) · ~r

⇤
⇢(~r).

More information on the Lie derivative, including its operation on 1-forms or more generally
on

�
m
n

�
-tensors—from which the action of the comoving time derivative follows—, can be found

e.g. in Ref. [17, Chap. 3.1–3.5].


	Introduction
	I Basic notions on continuous media
	Continuous medium: a model for many-body systems
	Basic ideas and concepts
	General mathematical framework
	Local thermodynamic equilibrium

	Lagrangian description
	Lagrangian coordinates
	Continuity assumptions
	Velocity and acceleration of a material point

	Eulerian description
	Eulerian coordinates. Velocity field
	Equivalence between the Eulerian and Lagrangian viewpoints
	Streamlines
	Material derivative

	Mechanical stress
	Forces in a continuous medium
	Fluids

	Bibliography for Chapter I

	II Kinematics of a continuous medium
	Generic motion of a continuous medium
	Local distribution of velocities in a continuous medium
	Rotation rate tensor and vorticity vector
	Strain rate tensor

	Classification of fluid flows
	Geometrical criteria
	Kinematic criteria
	Physical criteria


	Appendix to Chapter II
	Deformations in a continuous medium

	III Fundamental equations of non-relativistic fluid dynamics
	Reynolds transport theorem
	Closed system, open system
	Material derivative of an extensive quantity

	Mass and particle number conservation: continuity equation
	Integral formulation
	Local formulation

	Momentum balance: Euler and Navier–Stokes equations
	Material derivative of momentum
	Perfect fluid: Euler equation
	Newtonian fluid: Navier–Stokes equation
	Higher-order dissipative fluid dynamics

	Energy conservation, entropy balance
	Energy and entropy conservation in perfect fluids
	Energy conservation in Newtonian fluids
	Entropy balance in Newtonian fluids


	IV Non-relativistic flows of perfect fluids
	Hydrostatics of a perfect fluid
	Archimedes' principle
	Incompressible fluid
	Fluid at global thermal equilibrium
	Isentropic fluid

	Steady inviscid flows
	Bernoulli equation
	Applications of the Bernoulli equation

	Vortex dynamics in perfect fluids
	Circulation of the flow velocity. Kelvin's theorem
	Vorticity transport equation in perfect fluids

	Potential flows
	Equations of motion in potential flows
	Mathematical results on potential flows
	Two-dimensional potential flows


	Bibliography

