Tutorial sheet 2

Discussion topics:

- What are the Lagrangian and Eulerian descriptions? What is the material derivative? How is a fluid defined?
- What are the strain rate tensor, the rotation rate tensor, and the vorticity vector? How do they come about and what do they measure?

2. Stationary flow: second example

Consider the fluid flow whose velocity field $\vec{v}(t, \vec{r})$ has coordinates (in a given Cartesian system)

$$v^{1}(t, \vec{r}) = kx^{2}, \quad v^{2}(t, \vec{r}) = kx^{1}, \quad v^{3}(t, \vec{r}) = 0,$$
 (1)

where k is a positive real number, while x^1, x^2, x^3 are the coordinates of the position vector \vec{r} .

- i. Determine the stream lines at an arbitrary instant t.
- ii. Let X^1, X^2, X^3 denote the coordinates of some arbitrary point M and let t_0 be the real number defined by

$$kt_0 = \begin{cases} -\operatorname{artanh}(X^2/X^1) & \text{if } |X^1| > |X^2| \\ 0 & \text{if } X^1 = \pm X^2 \\ -\operatorname{artanh}(X^1/X^2) & \text{if } |X^1| < |X^2|. \end{cases}$$

Write down a parameterization $x^1(t)$, $x^2(t)$, $x^3(t)$, in terms of a parameter denoted by t, of the coordinates of the stream line $\vec{x}(t)$ going through M such that $d\vec{x}(t)/dt$ at any point equals the velocity field at that point, and that either $x^1(t) = 0$ or $x^2(t) = 0$ for $t = t_0$.

- iii. Viewing $\vec{x}(t)$ as the trajectory of a point—actually, of a fluid particle—, you already know the velocity of that point at time t (do you?). What is its acceleration $\vec{a}(t)$?
- iv. Coming back to the velocity field (1), compute first its partial derivative $\partial \vec{\mathbf{v}}(t, \vec{r})/\partial t$, then the material derivative

$$\frac{ \mathbf{D} \vec{\mathbf{v}}(t, \vec{r})}{\mathbf{D} t} \equiv \frac{\partial \vec{\mathbf{v}}(t, \vec{r})}{\partial t} + \left[\vec{\mathbf{v}}(t, \vec{r}) \cdot \vec{\nabla} \right] \vec{\mathbf{v}}(t, \vec{r}).$$

Compare $\partial \vec{v}(t,\vec{r})/\partial t$ and $D\vec{v}(t,\vec{r})/Dt$ with the acceleration of a fluid particle found in question iii.

3. Isotropy of pressure

Consider a geometrical point at position \vec{r} in a fluid at rest. The stress vector across every surface element going through this point is normal: $\vec{T}(\vec{r}) = -\mathcal{P}(\vec{r}) \vec{e}_n$, with \vec{e}_n the unit vector orthogonal to the surface element under consideration, directed outwards. Show that the (hydrostatic) pressure \mathcal{P} is independent of the orientation of \vec{e}_n .

Hint: Consider the forces on the faces of an infinitesimal trirectangular tetrahedron.