Tutorial sheet 10

Discussion topic: Flows at low Reynolds number. For a practical application, you may also read E. M. Purcell's article on [Life at low Reynolds number](http://dx.doi.org/10.1119/1.10903) and discover the "scallop theorem".

20. Equations of fluid dynamics in a uniformly rotating reference frame

For the study of various physical problems — see examples in question $iv.a$, it may be more convenient to study the dynamics of a fluid from the viewpoint of an observer in a reference frame \mathcal{R}_{Ω_0} in uniform rotation with angular velocity $\vec{\Omega}_0$ with respect to an inertial frame \mathcal{R}_0 .

In exercise 13, you already investigated hydrostatics in a rotating reference frame: in that case only the centrifugal acceleration plays a role, which can be entirely recast as the effect of a potential energy $\Phi_{\text{cen.}}(\vec{r}) \equiv -\frac{1}{2} (\vec{\Omega}_0 \times \vec{r})^2$ leading to the centrifugal inertial force density $\vec{f}_{\text{cen.}} = -\rho \vec{\nabla} \Phi_{\text{cen.}}$. The purpose of this exercise is to generalize that result to the derivation of (some of) the equations governing a flowing Newtonian fluid.

i. Kinematics

Recall the expressions of the centrifugal and Coriolis accelerations acting on a small fluid element in terms of its position vector \vec{r} and velocity \vec{v} (measured in \mathcal{R}_{Ω_0}) and of the angular velocity.

ii. Incompressibility condition

Writing down the relation between the velocity \vec{v} with respect to \mathcal{R}_{Ω_0} and that measured in \mathcal{R}_0 , show that the incompressibility condition valid in the inertial frame leads to $\vec{\nabla} \cdot \vec{v} = 0$.

iii. Navier–Stokes equation

Show that the incompressible Navier–Stokes equation from the point of view of an observer at rest in the rotating reference frame \mathcal{R}_{Ω_0} reads (the variables are omitted)

$$
\frac{\mathbf{D}\vec{\mathbf{v}}}{\mathbf{D}t} = -\frac{1}{\rho}\vec{\nabla}\mathbf{\mathcal{P}}_{\text{eff.}} + \nu \Delta \vec{\mathbf{v}} - 2\vec{\Omega}_0 \times \vec{\mathbf{v}} \tag{1}
$$

where $\mathcal{P}_{\text{eff.}} = \mathcal{P} + \rho(\Phi + \Phi_{\text{cen.}})$, with Φ the potential energy from which (non-inertial) volume forces acting on the fluid derive. Check that you recover the equation of hydrostatics found in exercise 13.

iv. Dimensionless numbers and limiting cases

a) Let L_c resp. v_c denote a characteristic length resp. velocity for a given flow. The Ekman and Rossby numbers are respectively defined as

$$
Ek \equiv \frac{\nu}{|\Omega_0| L_c^2} \qquad , \qquad Ro \equiv \frac{v_c}{|\Omega_0| L_c}.
$$

Compute Ek and Ro in a few numerical examples:

 $-L_c \approx 100 \text{ km}, \text{v}_c \approx 10 \text{ m} \cdot \text{s}^{-1}, \Omega_0 \approx 10^{-4} \text{ rad} \cdot \text{s}^{-1}, \nu \approx 10^{-5} \text{ m}^2 \cdot \text{s}^{-1}$ (wind in the Earth atmosphere); $-L_c \approx 1000 \text{ km}, \text{ v}_c \approx 0.1 \text{ m} \cdot \text{s}^{-1}, \Omega_0 \approx 10^{-4} \text{ rad} \cdot \text{s}^{-1}, \nu \approx 10^{-6} \text{ m}^2 \cdot \text{s}^{-1} \text{ (ocean stream)};$

 $-L_c \approx 10 \text{ cm}, v_c \approx 1 \text{ m} \cdot \text{s}^{-1}, \Omega_0 \approx 10 \text{ rad} \cdot \text{s}^{-1}, \nu \approx 10^{-6} \text{ m}^2 \cdot \text{s}^{-1}$ (coffee/tea in your cup).

b) Assuming stationarity, which term in Eq. [\(1\)](#page-0-0) is negligible (against which) at small Ekman number? at small Rossby number?

Write down the simplified equation of motion valid when both $Ek \ll 1$ and $Ro \ll 1$ (to which of the above examples does this correspond?). How do the (effective) pressure gradient $\vec{\nabla}P_{\text{eff}}$ and flow velocity stand relative to each other?