Tutorial sheet 1

Discussion topic: Which idealizations underlie the description of a macroscopic many-body system as a continuous medium? How is local thermodynamic equilibrium defined?

1. Stationary flow: first example

(This exercise introduces a number of concepts which will only be introduced in later lectures; this should pose you no difficulty.)

Consider the stationary flow defined in the region $x^1 > 0$, $x^2 > 0$ by its velocity field

$$\vec{\mathbf{v}}(t,\vec{r}) = k(-x^1\vec{\mathbf{e}}_1 + x^2\vec{\mathbf{e}}_2) \tag{1}$$

with k a positive constant, $\{\vec{e}_i\}$ the basis vectors of a Cartesian coordinate system and $\{x^i\}$ the coordinates of the position vector \vec{r} .

i. Vector analysis

a) Compute the divergence $\nabla \cdot \vec{\mathbf{v}}(t, \vec{r})$ of the velocity field (1). Check that your result is consistent with the existence of a scalar function $\psi(t, \vec{r})$ (the *stream function*) such that

$$\vec{\mathbf{v}}(t,\vec{r}) = -\vec{\nabla} \times \left[\psi(t,\vec{r}) \,\vec{\mathbf{e}}_3 \right] \tag{2}$$

and determine $\psi(t, \vec{r})$ — there is an arbitrary additive constant, which you may set equal to zero. What are the lines of constant $\psi(t, \vec{r})$?

b) Compute now the curl $\vec{\nabla} \times \vec{\mathbf{v}}(t, \vec{r})$ and deduce therefrom the existence of a scalar function $\varphi(t, \vec{r})$ (the *velocity potential*) such that

$$\vec{\mathbf{v}}(t,\vec{r}) = -\vec{\nabla}\varphi(t,\vec{r}). \tag{3}$$

(*Hint*: remember a theorem you saw in your lectures on classical mechanics and/or electromagnetism.) What are the lines of constant $\varphi(t, \vec{r})$?

ii. Stream lines

Determine the *stream lines* at some arbitrary time t. The latter are by definition lines $\vec{\xi}(\lambda)$ whose tangent is everywhere parallel to the instantaneous velocity field, with λ a parameter along the stream line. That is, they obey the condition

$$\frac{d\vec{\xi}(\lambda)}{d\lambda} = \alpha(\lambda) \vec{\mathbf{v}}(t, \vec{\xi}(\lambda))$$

with $\alpha(\lambda)$ a scalar function, or equivalently

$$\frac{\mathrm{d} \xi^1(\lambda)}{\mathsf{v}^1(t,\vec{\xi}(\lambda))} = \frac{\mathrm{d} \xi^2(\lambda)}{\mathsf{v}^2(t,\vec{\xi}(\lambda))} = \frac{\mathrm{d} \xi^3(\lambda)}{\mathsf{v}^3(t,\vec{\xi}(\lambda))},$$

with $d\xi^{i}(\lambda)$ the coordinates of the (infinitesimal) tangent vector to the stream line.