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17. Dimensionless equations of motion for sea surface waves
This exercise is partly a continuation of the lecture (June 24) on linear sea surface waves, which you should check if you are not sure
of the notations employed.

The equations of motion governing gravity waves at the free surface of an incompressible perfect
liquid (ocean/sea water) in a gravity field −g~ez are

~∇ ·~v(t,~r) = 0, (1a)

∂~v(t,~r)

∂t
+
[
~v(t,~r) · ~∇

]
~v(t,~r) = −1

ρ
~∇P (t,~r)− g~ez, (1b)

with the boundary conditions vz(t, x, z=0) = 0 at the sea bottom;

vz
(
t, x, z=h0+δh(t, x)

)
=
∂δh(t, x)

∂t
+ vx(t,~r)

∂δh(t, x)

∂x
(1c)

at the free surface, situated at z = h0 + δh(t, x); and a uniform pressure at that same free surface,
which may be re-expressed as

P
(
t, x, z=h0+δh(t, x)

)
= ρgδh(t, x) + P 0 (1d)

with P 0 a constant whose precise value is irrelevant. As in the lecture, the problem is assumed to be
two-dimensional.

i. We introduce characteristic scales for various quantities: δhc for the amplitude of the surface
deformation; Lc for lengths along the horizontal direction x; and tc for durations—in practice, the
“good” choice would be tc = Lc/cs with cs the speed of sound, yet this is irrelevant here. With their
help, we define dimensionless variables

t∗ ≡ t

tc
, x∗ ≡ x

Lc
, z∗ ≡ z

Lc
,

and fields:
δh∗ ≡ δh

δhc
, v∗x ≡

vx
δhc/tc

, v∗z ≡
vz

δhc/tc
, P ∗ ≡ P − P 0

ρ δhcLc/t2c
.

Considering the latter as functions of the reduced variables t∗, x∗, z∗, rewrite the equations (1a)–(1d),
making use of the dimensionless numbers

Fr ≡
√
Lc/g

tc
, ε ≡ δhc

Lc
, δ ≡ h0

Lc
.

What does the parameter ε control (mathematically)? and the parameter δ (physically)?

ii. Let us from now on assume that the flow is irrotational.
a) Let ϕ(t∗, x∗, z∗) denote the velocity potential, such that ~v∗ = −~∇∗ϕ. Assuming that ϕ can be
written as an infinite series in z∗

ϕ(t∗, x∗, z∗) =

∞∑
n=0

z∗nϕn(t
∗, x∗), (2)

show that the functions ϕn obey a set of coupled equations, such that every ϕn with even resp. odd n
can ultimately be related to ϕ0 resp. ϕ1.
Hint : Remember that the velocity potential obeys a celebrated differential equation.
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b) Inspecting the series (2), you can equate ϕ1 to one of the components of the (dimensionless) velocity
~v∗ at z∗ = 0. Using the boundary conditions for the flow, deduce that all ϕn with odd n vanish, and
that the velocity potential is eventually given by

ϕ(t∗, x∗, z∗) = ϕ0(t
∗, x∗)− z∗2

2

∂2ϕ0(t
∗, x∗)

∂x∗2
+
z∗4

4!

∂4ϕ0(t
∗, x∗)

∂x∗4
+ . . .

Introducing the notation u(t∗, x∗) ≡ −∂ϕ0(t
∗, x∗)/∂x∗, express v∗x(t

∗, x∗, z∗) and v∗z(t
∗, x∗, z∗) as a

function of u(t∗, x∗) up to order z∗3.

iii. a) Show that you can combine some of the dimensionless equations found in question i. into

∂v∗x
∂t∗

+ ε

(
v∗x
∂v∗x
∂x∗

+ v∗z
∂v∗z
∂x∗

)
+

1

Fr2
∂δh∗

∂x∗
= 0. (3)

b) Neglecting the term of order ε in the previous equation and truncating the expressions of v∗x, v∗z
of question ii.b) to linear order in z∗, show that a proper combination of Eq. (3) and the boundary
conditions leads to a simple partial differential equation for u. What do you recognize?
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