Tutorial sheet 6

Throughout this exercise sheet we use Minkowski coordinates $\{x^{\mu}\}$ and set c = 1. For the sake of brevity, the x-dependence of fields will not be denoted.

11. Vorticity in a relativistic perfect fluid (part 2)

In this exercise, we consider a perfect fluid with a single conserved charge (referred to as "particle number"). Let n denote its local-rest-frame density.

i. Preamble: another form of the relativistic Euler equation

Let $h \equiv (e + \mathcal{P})/n$ be the enthalpy per particle. Show that you can rewrite the momentumconservation equation for a perfect fluid in the form

$$n u^{\mu} \partial_{\mu} (h u_{\nu}) - n u_{\nu} u^{\mu} \partial_{\mu} h = -\partial_{\nu} \mathcal{P} - u_{\nu} u^{\mu} \partial_{\mu} \mathcal{P}.$$
⁽¹⁾

(Cf. second equation in exercise 4.).

iii. Dynamical vorticity

Let us define the (dynamical) *vorticity tensor* by the components

$$\Omega_{\mu\nu} \equiv \partial_{\nu}(hu_{\mu}) - \partial_{\mu}(hu_{\nu}). \tag{2}$$

a) Derive the identity

$$\Omega_{\mu\nu} = 2h \bigg[\omega_{\mu\nu} - \frac{1}{2} \big(a_{\mu} u_{\nu} - a_{\nu} u_{\mu} \big) + \frac{1}{2} \big(u_{\mu} \partial_{\nu} - u_{\nu} \partial_{\mu} \big) \ln h \bigg],$$
(3)

where the $\omega_{\mu\nu}$ are the components of the kinematic vorticity tensor defined in exercise 10.

b) Using the momentum-conservation equation (1), show

$$\Omega_{\mu\nu}u^{\nu} = \partial_{\mu}h - \frac{1}{n}\partial_{\mu}\mathcal{P}.$$
(4)

c) Define now a four-vector by $\Omega^{\mu} \equiv \frac{1}{2} \epsilon^{\mu\nu\rho\sigma} \Omega_{\rho\sigma} u_{\nu}$. Why is it obviously orthogonal to the four-velocity? Show that it evolves according to

$$u^{\nu}\partial_{\nu}\Omega^{\mu} = 2u^{\nu}\partial_{\nu}(h\omega^{\mu}), \tag{5}$$

where the vorticity 4-vector ω^{μ} was defined in exercise 10.

12. Two integral identities

Using the energy-momentum conservation equation $\partial_{\mu}T^{\mu\nu} = 0$, prove the following results for a system for which $T^{\mu\nu}$ vanishes outside a bound region of space.¹ In these identities, the roman indices take values from $i, j \in \{1, 2, 3\}$.

i.
$$\frac{\partial^2}{\partial t^2} \int T^{00} x^i x^j \mathrm{d}^3 \vec{r} = 2 \int T^{ij} \mathrm{d}^3 \vec{r} - \text{constituting the so-called tensor virial theorem.}$$

ii.
$$\frac{\partial^2}{\partial t^2} \int T^{00} (x^i x_i)^2 \mathrm{d}^3 \vec{r} = 4 \int T^i_{\ i} x^j x_j \mathrm{d}^3 \vec{r} + 8 \int T^{ij} x_i x_j \mathrm{d}^3 \vec{r}.$$

¹You already know $\frac{\partial}{\partial t} \int T^{0\mu} d^3 \vec{r} = 0$, expressing the conservation of energy and momentum.